当前位置: X-MOL 学术Micropor. Mesopor. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bimetallic MnCo alloy nanoparticles decorated boron-doped carbon nanotubes as an active and durable electrode for supercapacitor
Microporous and Mesoporous Materials ( IF 5.2 ) Pub Date : 2020-08-26 , DOI: 10.1016/j.micromeso.2020.110535
Yujin Li , Xueni Shang , Cuimeng Song , Jinchao Chen , Yun Li , Min Huang , Fanbin Meng

The demand for low-cost and high-performance energy storage supercapacitors is continuously promoting as a result of the rapid development of portable electric vehicles and electronic devices. Here, a high-performance MnCo alloy nanoparticles decorated boron-doped carbon nanotubes (MnCo–B/CNTs) electrode was obtained by a facile heteroatom hydrothermal and subsequent liquid-phase reduction methods, which yields improved performance for supercapacitor. In this process, boron doping led to extra oxygen graft into carbon surface, leading to the improved durability and wettability of the fabricated carbon-based electrodes, which presented both increased capacitances and rate capability due to electrolyte ion penetration and interactions with carbon surface. In addition, boron doping led to smaller size and higher dispersion of MnCo nanoparticles, facilitating more metallic alloy and new electroactive sites formation and promoting supercapacitive activity, which was attributed to increased MnCo alloy nucleation rate with boron-doped, electron donation from boron to alloy, and extra chemisorption sites. The constructed electrode exhibited all-round performance improvements of specific capacitance (1175 F g−1 at 0.5 A g−1) and capacitance retention (94.48% at a current density of 20 A g−1 after 5000 cycles), providing a novel insight for designing high performance supercapacitors.



中文翻译:

MnCo双金属合金纳米颗粒装饰着掺硼碳纳米管,作为超级电容器的有源耐用电极

由于便携式电动车辆和电子设备的快速发展,对低成本和高性能储能超级电容器的需求不断增长。在这里,通过简便的杂原子水热法和随后的液相还原方法获得了装饰有掺硼碳纳米管(MnCo–B / CNTs)的高性能MnCo合金纳米粒子,从而改善了超级电容器的性能。在此过程中,硼掺杂导致多余的氧接枝到碳表面,从而提高了所制造的碳基电极的耐久性和可湿性,由于电解质离子的渗透以及与碳表面的相互作用,从而提高了电容和速率能力。此外,硼掺杂导致MnCo纳米粒子的尺寸更小且分散度更高,促进更多金属合金的形成和新的电活性位点的形成并促进超电容活性,这归因于掺硼的MnCo合金成核速率增加,硼向合金的电子给体以及额外的化学吸附位点。所构建的电极展现出比电容(1175 F g在0.5 A g -1时为-1)和电容保持力(在5000次循环后电流密度为20 A g -1时为94.48%),为设计高性能超级电容器提供了新颖的见解。

更新日期:2020-08-31
down
wechat
bug