当前位置: X-MOL 学术Agric. Ecosyst. Environ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Grazing Effects on Nitrous Oxide Flux in an Integrated Crop-Livestock System
Agriculture, Ecosystems & Environment ( IF 6.6 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.agee.2020.107146
M.A. Liebig , D.R. Faust , D.W. Archer , S.L. Kronberg , J.R. Hendrickson , K.D. Aukema

Abstract Integrated crop-livestock (ICL) systems can improve profitability, production efficiencies, and reduce environmental degradation. Among the many environmental metrics important for assessing the sustainability of ICL systems, nitrous oxide (N2O) flux occupies a central role given its effect on net greenhouse gas balance of agricultural practices. Unfortunately, there is limited understanding of ICL system effects on N2O flux, particularly in North America. Therefore, we measured N2O flux from ICL and non-ICL practices near Mandan, ND USA using static chamber methodology over a 3-yr period (Oct 2016 - Oct 2019). Treatments included grazed and ungrazed cropland and grassland on a site with gently rolling topography and fertile Haplustoll soils. Grazing was done by yearling cattle in the fall of each year (0.41-0.76 ha steer-1). Maximum N2O flux from cropland generally occurred in March and April when soil moisture was abundant and air temperatures exceeded 0 °C (i.e., during spring snow melt). Nitrous oxide flux was over eight times greater under cropland compared to grassland (Mean = 33.7 vs. 4.1 μg N2O-N m-2 h-1, respectively). However, N2O flux was not affected by grazing in either production system. Within cropland, N2O flux was greater in corn (Zea mays L.) and spring wheat (Triticum aestivum L.) phases of the rotation (Mean = 40.5 μg N2O-N m-2 h-1) compared to the soybean (Glycine max L.) and cover crop phases (Mean = 20 μg N2O-N m-2 h-1). Stepwise regression found N2O flux to be weakly related to volumetric water content when the soil was not frozen (r2

中文翻译:

放牧对农牧一体化系统中一氧化二氮通量的影响

摘要 综合作物畜牧 (ICL) 系统可以提高盈利能力、生产效率并减少环境退化。在评估 ICL 系统可持续性的许多重要环境指标中,一氧化二氮 (N2O) 通量占据核心作用,因为它对农业实践的温室气体净平衡有影响。不幸的是,对 ICL 系统对 N2O 通量的影响了解有限,尤其是在北美。因此,我们使用静态室方法在 3 年期间(2016 年 10 月至 2019 年 10 月)测量了来自美国北卡罗来纳州曼丹附近 ICL 和非 ICL 实践的 N2O 通量。处理包括放牧和未放牧的农田和草地,地势起伏平缓,拥有肥沃的 Haplustoll 土壤。每年秋季(0.41-0.76 ha steer-1)由一岁牛进行放牧。来自农田的 N2O 通量最大通常发生在 3 月和 4 月,此时土壤水分充足且气温超过 0 °C(即春季融雪期间)。与草地相比,农田下的一氧化二氮通量高出八倍以上(平均值分别为 33.7 和 4.1 μg N2O-N m-2 h-1)。然而,N2O 通量不受任何生产系统中放牧的影响。在农田中,与大豆(Glycine max)相比,玉米(Zea mays L.)和春小麦(Triticum aestivum L.)轮作阶段(平均值 = 40.5 μg N2O-N m-2 h-1)的 N2O 通量更大L.) 和覆盖作物阶段(平均值 = 20 μg N2O-N m-2 h-1)。逐步回归发现,当土壤未冻结时,N2O 通量与体积含水量的相关性较弱(r2 与草地相比,农田下的一氧化二氮通量是草地的八倍以上(平均值分别为 33.7 和 4.1 μg N2O-N m-2 h-1)。然而,N2O 通量不受任何生产系统中放牧的影响。在农田中,与大豆(Glycine max)相比,玉米(Zea mays L.)和春小麦(Triticum aestivum L.)轮作阶段(平均值 = 40.5 μg N2O-N m-2 h-1)的 N2O 通量更大L.) 和覆盖作物阶段(平均值 = 20 μg N2O-N m-2 h-1)。逐步回归发现,当土壤未冻结时,N2O 通量与体积含水量的相关性较弱(r2 与草地相比,农田下的一氧化二氮通量高出八倍以上(平均值分别为 33.7 和 4.1 μg N2O-N m-2 h-1)。然而,N2O 通量不受任何生产系统中放牧的影响。在农田中,与大豆(Glycine max)相比,玉米(Zea mays L.)和春小麦(Triticum aestivum L.)轮作阶段(平均值 = 40.5 μg N2O-N m-2 h-1)的 N2O 通量更大L.) 和覆盖作物阶段(平均值 = 20 μg N2O-N m-2 h-1)。逐步回归发现,当土壤未冻结时,N2O 通量与体积含水量的相关性较弱(r2 5 μg N2O-N m-2 h-1)与大豆(Glycine max L.)和覆盖作物阶段(平均值 = 20 μg N2O-N m-2 h-1)相比。逐步回归发现,当土壤未冻结时,N2O 通量与体积含水量的相关性较弱(r2 5 μg N2O-N m-2 h-1)与大豆(Glycine max L.)和覆盖作物阶段(平均值 = 20 μg N2O-N m-2 h-1)相比。逐步回归发现,当土壤未冻结时,N2O 通量与体积含水量的相关性较弱(r2
更新日期:2020-12-01
down
wechat
bug