当前位置: X-MOL 学术Int. J. Adv. Robot. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Robust tracking control of an underwater vehicle and manipulator system based on double closed-loop integral sliding mode
International Journal of Advanced Robotic Systems ( IF 2.3 ) Pub Date : 2020-07-01 , DOI: 10.1177/1729881420941778
Yanhui Wei 1 , Zhi Zheng 1 , Qiangqiang Li 1 , Zhilong Jiang 1 , Pengfei Yang 1
Affiliation  

A nonlinear robust control method for the trajectory tracking of the underwater vehicle and manipulator system that operates in the presence of external current disturbances is proposed using double closed-loop integral sliding mode control. The designed controller uses a double closed-loop control structure to track the desired trajectory in the joint space of the underwater vehicle and manipulator system, and its inner and outer loop systems use integral sliding surface to enhance the robustness of the whole system. Then, the continuous switching mode based on hyperbolic tangent function is used instead of the traditional discontinuous switching mode to reduce the chattering of the control input of the underwater vehicle and manipulator system. In addition, the control method proposed in this article does not need to estimate the uncertainties of the underwater vehicle and manipulator system control system through online identification, but also can ensure the robustness of the underwater vehicle and manipulator system motion control in underwater environment. Therefore, it is easier to be implemented on the embedded platform of the underwater vehicle and manipulator system and applied to the actual marine operation tasks. At last, the stability of the control system is proved by the Lyapunov theory, and its effectiveness and feasibility are verified by the simulation experiments in MATLAB software.

中文翻译:

基于双闭环积分滑模的水下航行器与机械手系统鲁棒跟踪控制

利用双闭环积分滑模控制,提出了一种在存在外部电流扰动的情况下运行的水下航行器和机械手系统轨迹跟踪的非线性鲁棒控制方法。所设计的控制器采用双闭环控制结构在水下航行器与机械臂系统的关节空间内跟踪所需轨迹,其内外环系统采用整体滑动面,增强了整个系统的鲁棒性。然后,采用基于双曲正切函数的连续切换模式代替传统的不连续切换模式,以减少水下航行器和机械手系统控制输入的抖动。此外,本文提出的控制方法不需要通过在线辨识来估计水下航行器和机械手系统控制系统的不确定性,也可以保证水下航行器和机械手系统运动控制在水下环境中的鲁棒性。因此,更容易在水下航行器和机械手系统的嵌入式平台上实现,并应用于实际的海上作业任务。最后,利用李雅普诺夫理论证明了控制系统的稳定性,并通过MATLAB软件的仿真实验验证了其有效性和可行性。同时也可以保证水下航行器和机械手系统在水下环境中运动控制的鲁棒性。因此,更容易在水下航行器和机械手系统的嵌入式平台上实现,并应用于实际的海上作业任务。最后,利用李雅普诺夫理论证明了控制系统的稳定性,并通过MATLAB软件的仿真实验验证了其有效性和可行性。同时也可以保证水下航行器和机械手系统在水下环境中运动控制的鲁棒性。因此,更容易在水下航行器和机械手系统的嵌入式平台上实现,并应用于实际的海上作业任务。最后利用Lyapunov理论证明了控制系统的稳定性,并通过MATLAB软件的仿真实验验证了其有效性和可行性。
更新日期:2020-07-01
down
wechat
bug