当前位置: X-MOL 学术Macromolecules › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structure and Colloidal Stability of Adsorption Layers of Macrocycle, Linear, Comb, Star, and Dendritic Macromolecules
Macromolecules ( IF 5.5 ) Pub Date : 2020-08-25 , DOI: 10.1021/acs.macromol.0c00952
Frans A. M. Leermakers 1 , Fabien Léonforte 2 , Gustavo S. Luengo 2
Affiliation  

The equilibrium theory of polymer adsorption on a solid/liquid interface is well established. De Gennes explained that linear homopolymers adsorbing on a surface develop a proximal, central, and distal region in their adsorption profile, wherein the central region has a universal scaling self-similar structure with power-law coefficient −4/3. More pictorially, the layer is composed of trains, loops, and tails. Linear chains have just two tails, and therefore it is often assumed that the adsorption layer consists of loops only. Branched macromolecules have multiple tails, and the loops-only approach is argued to become progressively less accurate. Using self-consistent field theory of Scheutjens and Fleer (SF-SCF), we consider the macrocycle (chain without ends), linear, star-like, dendritic, and comb-like (homo)polymers and focus on the effects of tails. We show that the adsorption profile changes systematically with the degree of branching. Typically, for significantly branched chains the polymer density in the outer part of the central region has an effective scaling coefficient that may exceed the −4/3 value. Comb polymers adsorb with their backbone preferentially and generate a “brush”-like layer through adsorption, which we refer to as a hedge layer as the backbone and branches are hidden behind the free ends. By way of an array of “out-going” side chains, such a layer acts as a superb colloid stabilizer and as a lubricant, outperforming star-like polymers or dendritic polymers which qualitatively behave similar to linear chains.

中文翻译:

大环,线性,梳状,星形和树枝状大分子吸附层的结构和胶体稳定性

聚合物在固/液界面上吸附的平衡理论已经建立。De Gennes解释说,吸附在表面上的线性均聚物在其吸附曲线上形成了近端,中心和远端区域,其中中心区域具有幂律系数为-4/3的通用缩放自相似结构。更形象地讲,该层由火车,环路和尾巴组成。线性链只有两个尾巴,因此通常假定吸附层仅由环组成。支链大分子具有多个尾巴,并且仅循环法被认为逐渐变得不那么精确。使用Scheutjens和Fleer(SF-SCF)的自洽场理论,我们考虑了大环(无末端链),线性,星形,树突状,和梳状(均质)聚合物,并关注尾巴的影响。我们表明,吸附曲线随支化程度而系统地变化。通常,对于明显支链的聚合物,中心区域外部的聚合物密度具有可能超过-4/3值的有效缩放系数。梳状聚合物优先吸附其主链,并通过吸附生成“刷状”层,我们将其称为树篱层,因为主链和分支隐藏在自由端后面。通过一系列“外向”侧链,该层可作为优质的胶体稳定剂和润滑剂,在质量上表现出与线性链相似的星形聚合物或树状聚合物。通常,对于明显支链的聚合物,中心区域外部的聚合物密度具有可能超过-4/3值的有效缩放系数。梳状聚合物优先吸附其主链,并通过吸附生成“刷状”层,我们将其称为树篱层,因为主链和分支隐藏在自由端后面。通过一系列“外向”侧链,该层可作为优质的胶体稳定剂和润滑剂,在质量上表现出与线性链相似的星形聚合物或树状聚合物。通常,对于明显支链的聚合物,中心区域外部的聚合物密度具有可能超过-4/3值的有效缩放系数。梳状聚合物优先吸附其主链,并通过吸附生成“刷状”层,我们将其称为树篱层,因为主链和分支隐藏在自由端后面。通过一系列“外向”侧链,该层可作为优质的胶体稳定剂和润滑剂,在质量上表现优于线性链的星形聚合物或树枝状聚合物。梳状聚合物优先吸附其主链,并通过吸附生成“刷状”层,我们将其称为树篱层,因为主链和分支隐藏在自由端后面。通过一系列“外向”侧链,该层可作为优质的胶体稳定剂和润滑剂,在质量上表现出与线性链相似的星形聚合物或树状聚合物。梳状聚合物优先吸附其主链,并通过吸附产生“刷状”层,我们将其称为树篱层,因为主链和分支隐藏在自由端的后面。通过一系列“外向”侧链,该层可作为优质的胶体稳定剂和润滑剂,在质量上表现优于线性链的星形聚合物或树枝状聚合物。
更新日期:2020-09-09
down
wechat
bug