当前位置: X-MOL 学术Int. J. Numer. Meth. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High‐order symmetric cubature rules for tetrahedra and pyramids
International Journal for Numerical Methods in Engineering ( IF 2.9 ) Pub Date : 2020-10-15 , DOI: 10.1002/nme.6528
Jan Jaśkowiec 1 , N. Sukumar 2
Affiliation  

Correspondence ∗N. Sukumar, Department of Civil and Environmental Engineering, University of California, One Shields Avenue, Davis, CA 95616, USA Email: nsukumar@ucdavis.edu In this article, we present an algorithm to construct high-order fully symmetric cubature rules for tetrahedral and pyramidal elements, with positive weights and integration points that are in the interior of the domain. Cubature rules are fully symmetric if they are invariant to affine transformations of the domain. We divide the integration points into symmetry orbits where each orbit contains all the points generated by the permutation stars. These relations are represented by equality constraints. The construction of symmetric cubature rules require the solution of nonlinear polynomial equations with both inequality and equality constraints. For higher orders, we use an algorithm that consists of five sequential phases to produce the cubature rules. In the literature, symmetric numerical integration rules are available for the tetrahedron for orders p = 1–10, 14, and for the pyramid up to p = 10. We have obtained fully symmetric cubature rules for both of these elements up to order p = 20. Numerical tests are presented that verify the polynomial-precision of the cubature rules. Convergence studies are performed for the integration of exponential, weakly singular and trigonometric test functions over both elements with flat and curved faces. With increase in p, improvements in accuracy is realized, though nonmonotonic convergence is observed.

中文翻译:

四面体和金字塔的高阶对称体积规则

信函*N。Sukumar,加州大学土木与环境工程系,One Shields Avenue, Davis, CA 95616, USA 电子邮件:nsukumar@ucdavis.edu 在本文中,我们提出了一种算法来构建四面体和金字塔元素,在域内部具有正权重和积分点。如果 Cubature 规则对域的仿射变换不变,则它们是完全对称的。我们将积分点划分为对称轨道,其中每个轨道包含由置换星生成的所有点。这些关系由等式约束表示。对称体积规则的构建需要求解具有不等式和等式约束的非线性多项式方程。对于更高的订单,我们使用一种由五个连续阶段组成的算法来生成体积规则。在文献中,对称数值积分规则可用于阶数 p = 1-10、14 的四面体和阶数 p = 10 的金字塔。我们已经获得了阶数为 p = 的这两个元素的完全对称体积规则20. 提供了验证体积规则的多项式精度的数值测试。收敛研究用于在具有平面和曲面的两个单元上对指数、弱奇异和三角测试函数进行积分。随着 p 的增加,实现了精度的提高,尽管观察到非单调收敛。对称数值积分规则可用于阶数 p = 1-10、14 的四面体,以及阶数 p = 10 的金字塔。我们已经为阶数 p = 20 的这两个元素获得了完全对称的体积规则。 数值测试提出了验证体积规则的多项式精度。收敛研究用于在具有平面和曲面的两个单元上对指数、弱奇异和三角测试函数进行积分。随着 p 的增加,实现了精度的提高,尽管观察到非单调收敛。对称数值积分规则可用于阶数 p = 1-10、14 的四面体,以及阶数 p = 10 的金字塔。我们已经为阶数 p = 20 的这两个元素获得了完全对称的体积规则。 数值测试提出了验证体积规则的多项式精度。收敛研究用于在具有平面和曲面的两个单元上对指数、弱奇异和三角测试函数进行积分。随着 p 的增加,实现了精度的提高,尽管观察到非单调收敛。收敛研究用于在具有平面和曲面的两个单元上对指数、弱奇异和三角测试函数进行积分。随着 p 的增加,实现了精度的提高,尽管观察到非单调收敛。收敛研究用于在具有平面和曲面的两个单元上对指数、弱奇异和三角测试函数进行积分。随着 p 的增加,实现了精度的提高,尽管观察到非单调收敛。
更新日期:2020-10-15
down
wechat
bug