当前位置: X-MOL 学术Discrete Contin. Dyn. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Generic Birkhoff spectra
Discrete and Continuous Dynamical Systems ( IF 1.1 ) Pub Date : 2020-02-14 , DOI: 10.3934/dcds.2020131
Zoltán Buczolich , , Balázs Maga , Ryo Moore ,

Suppose that $ \Omega = \{0, 1\}^\mathbb{N} $ and $ \sigma $ is the one-sided shift. The Birkhoff spectrum $ S_{f}(α) = \dim_{H}\Big \{ \omega\in\Omega:\lim\limits_{N \to \infty} \frac{1}{N} \sum\limits_{n = 1}^N f(\sigma^n \omega) = \alpha \Big \}, $ where $ \dim_{H} $ is the Hausdorff dimension. It is well-known that the support of $ S_{f}(α) $ is a bounded and closed interval $ L_f = [\alpha_{f, \min}^*, \alpha_{f, \max}^*] $ and $ S_{f}(α) $ on $ L_{f} $ is concave and upper semicontinuous. We are interested in possible shapes/properties of the spectrum, especially for generic/typical $ f\in C(\Omega) $ in the sense of Baire category. For a dense set in $ C(\Omega) $ the spectrum is not continuous on $ \mathbb{R} $, though for the generic $ f\in C(\Omega) $ the spectrum is continuous on $ \mathbb{R} $, but has infinite one-sided derivatives at the endpoints of $ L_{f} $. We give an example of a function which has continuous $ S_{f} $ on $ \mathbb{R} $, but with finite one-sided derivatives at the endpoints of $ L_{f} $. The spectrum of this function can be as close as possible to a "minimal spectrum". We use that if two functions $ f $ and $ g $ are close in $ C(\Omega) $ then $ S_{f} $ and $ S_{g} $ are close on $ L_{f} $ apart from neighborhoods of the endpoints.

中文翻译:

通用伯克霍夫谱

假设$ \ Omega = \ {0,1 \} ^ \ mathbb {N} $和$ \ sigma $是单向移位。Birkhoff谱$ S_ {f}(α)= \ dim_ {H} \ Big \ {\ omega \ in \ Omega:\ lim \ limits_ {N \ to \ infty} \ frac {1} {N} \ sum \ limits_ {n = 1} ^ N f(\ sigma ^ n \ omega)= \ alpha \ Big \},其中$ \ dim_ {H} $是Hausdorff维数。众所周知,$ S_ {f}(α)$的支持是一个有界的封闭区间$ L_f = [\ alpha_ {f,\ min} ^ *,\ alpha_ {f,\ max} ^ *] $和L_ {f} $上的$和$ S_ {f}(α)$是凹且上半连续的。我们对频谱的可能形状/特性感兴趣,尤其是对于Baire类别中C(\ Omega)$中的通用/典型$ f \。对于C(\ Omega)$中的密集集合,频谱在$ \ mathbb {R} $上不是连续的,尽管对于C(\ Omega)$中的泛型$ f \,频谱在$ \ mathbb {R } $,但是在$ L_ {f} $的端点处具有无限的单边导数。我们给出一个函数示例,该函数在$ \ mathbb {R} $上具有连续的$ S_ {f} $,但是在$ L_ {f} $的端点处具有有限的单侧导数。该功能的频谱可以尽可能接近“最小频谱”。我们使用以下假设:如果两个函数$ f $和$ g $在$ C(\ Omega)$中接近,则$ S_ {f} $和$ S_ {g} $在$ L_ {f} $上接近,而附近端点。
更新日期:2020-02-14
down
wechat
bug