当前位置: X-MOL 学术Polym. Test. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mannose functionalized chitosan nanosystems for enhanced antimicrobial activity against multidrug resistant pathogens
Polymer Testing ( IF 5.1 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.polymertesting.2020.106814
Sadaf Ejaz , Ayesha Ihsan , Tayyaba Noor , Saima Shabbir , Muhammad Imran

Abstract Escalating antimicrobial resistance is causing a major threat to the public health. Failure of traditional antibiotics urges the development of alternative therapeutics, which include biopolymeric nanosystems with intrinsic antimicrobial potential. In the present study, mannose functionalized chitosan nanosystems (M-CNS) were fabricated through reductive amination of chitosan with mannose and further its ionic gelation. Changes in zeta potential and characteristic peaks in FTIR spectra revealed surface functionalization of chitosan with mannose. Zeta-sizer studies disclosed relatively higher size (180 ± 5 nm) of mannosylated CNS as compared to CNS (162 ± 7 nm). Inversely, the zeta-potential was reduced from +32.2 mV to +25.4 mV for M-CNS. Scanning electron microscopy verified the slight increase in size for M-CNS. Antimicrobial evaluation of designed nanosystems as alternative antibacterial agent was assessed by time-kill, polystyrene adherence and antibiofilm assays against both Gram-positive and Gram-negative pathogens. Results indicated that mannose functionalized CNS inhibited the growth of resistant Escherichia coli and Listeria monocytogenes, while demonstrating anti-adherence and biofilm disruption activity. Furthermore, highly resistant Pseudomonas aeruginosa and Staphylococcus aureus were also susceptible against M-CNS. This study unveiled the potential of M-CNS against pathogenic, multidrug resistant, biofilm forming bacteria; thus, making them an ideal candidate for developing alternative-medicines to cure the emerging resistant infections.

中文翻译:

甘露糖功能化壳聚糖纳米系统可增强对多重耐药病原体的抗菌活性

摘要 不断升级的抗菌素耐药性正在对公众健康造成重大威胁。传统抗生素的失败促使替代疗法的发展,其中包括具有内在抗菌潜力的生物聚合物纳米系统。在本研究中,甘露糖功能化壳聚糖纳米系统(M-CNS)通过壳聚糖与甘露糖的还原胺化和进一步的离子凝胶化制备。FTIR 光谱中 zeta 电位和特征峰的变化揭示了壳聚糖与甘露糖的表面功能化。Zeta-sizer 研究揭示了与 CNS (162 ± 7 nm) 相比,甘露糖化 CNS 的尺寸相对较高 (180 ± 5 nm)。相反,M-CNS 的 zeta 电位从 +32.2 mV 降低到 +25.4 mV。扫描电子显微镜证实了 M-CNS 的尺寸略有增加。通过对革兰氏阳性和革兰氏阴性病原体的时间杀伤、聚苯乙烯粘附和抗生物膜测定来评估作为替代抗菌剂的设计纳米系统的抗菌评估。结果表明,甘露糖功能化的 CNS 抑制了耐药大肠杆菌和单核细胞增生李斯特菌的生长,同时表现出抗粘附和生物膜破坏活性。此外,高度耐药的铜绿假单胞菌和金黄色葡萄球菌也对 M-CNS 敏感。该研究揭示了 M-CNS 对抗致病性、多药耐药性生物膜形成细菌的潜力;因此,使它们成为开发替代药物以治疗新出现的耐药性感染的理想候选者。针对革兰氏阳性和革兰氏阴性病原体的聚苯乙烯粘附和抗生物膜测定。结果表明,甘露糖功能化的 CNS 抑制了耐药大肠杆菌和单核细胞增生李斯特菌的生长,同时表现出抗粘附和生物膜破坏活性。此外,高度耐药的铜绿假单胞菌和金黄色葡萄球菌也对 M-CNS 敏感。该研究揭示了 M-CNS 对抗致病性、多药耐药性生物膜形成细菌的潜力;因此,使它们成为开发替代药物以治疗新出现的耐药性感染的理想候选者。针对革兰氏阳性和革兰氏阴性病原体的聚苯乙烯粘附和抗生物膜测定。结果表明,甘露糖功能化的 CNS 抑制了耐药大肠杆菌和单核细胞增生李斯特菌的生长,同时表现出抗粘附和生物膜破坏活性。此外,高度耐药的铜绿假单胞菌和金黄色葡萄球菌也对 M-CNS 敏感。该研究揭示了 M-CNS 对抗致病性、多药耐药性生物膜形成细菌的潜力;因此,使它们成为开发替代药物以治疗新出现的耐药性感染的理想候选者。同时表现出抗粘附和生物膜破坏活性。此外,高度耐药的铜绿假单胞菌和金黄色葡萄球菌也对 M-CNS 敏感。该研究揭示了 M-CNS 对抗致病性、多药耐药性生物膜形成细菌的潜力;因此,使它们成为开发替代药物以治疗新出现的耐药性感染的理想候选者。同时表现出抗粘附和生物膜破坏活性。此外,高度耐药的铜绿假单胞菌和金黄色葡萄球菌也对 M-CNS 敏感。该研究揭示了 M-CNS 对抗致病性、多药耐药性生物膜形成细菌的潜力;因此,使它们成为开发替代药物以治疗新出现的耐药性感染的理想候选者。
更新日期:2020-11-01
down
wechat
bug