当前位置: X-MOL 学术ISIJ Int. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical Simulation of Fluid Flow and Solidification in a Vertical Round Bloom Caster Using a Four-port SEN with Mold and Strand Electromagnetic Stirring
ISIJ International ( IF 1.8 ) Pub Date : 2020-09-25 , DOI: 10.2355/isijinternational.isijint-2019-738
Heping Liu 1 , Zhongying Wang 1 , Hao Qiu 1
Affiliation  

A computational model coupling electromagnetic field with a macroscopic heat and fluid flow is developed to investigate the flow pattern and solidification in a vertical continuous caster using a four-port submerged entry nozzle (SEN) with mold and strand electromagnetic stirring (M-EMS and S-EMS). The flow pattern and solidification features of the bloom strand without and with EMS in the caster using the four-port SEN is analyzed and compared with that using a straight-port nozzle. The effects of the stirring parameters and the position of the strand stirrer on the flow and solidification are discussed. The approach to identify the optimum stirring parameters by the comparison of tangential velocity is suggested. The results show that the application of M-EMS in a four-port SEN can weaken the strength of the jet impingement from every port of the four-port SEN, and rapidly dissipate the superheat of the melt and reduce the liquid fraction in the mold. In spite of inhomogeneous shell growth in the mold, the swirl velocity obtained by a four-port SEN and M-EMS and the solidus fraction by S-EMS is above those of a single-port SEN with the same stirring strength, which is favorable for the formation of more equiaxed crystals. For the S-EMS, the solidified shell thickness is the main factor to determine the stirring position and the tangential velocity at the same stirring intensity. In terms of different ported SENs, it is necessary to perform specific optimization of the stirring parameters of M-EMS and S-EMS.



中文翻译:

带有模具和钢绞线电磁搅拌的四端口SEN的立式圆坯连铸机内流体流动和凝固的数值模拟

开发了一种将电磁场与宏观热和流体流耦合的计算模型,以研究使用带有模具和钢绞线电磁搅拌(M-EMS和S)的四端口浸入式注嘴(SEN)的立式连铸机的流型和凝固-EMS)。分析了使用四端口SEN的连铸机中不带EMS和带EMS的大方坯的流型和凝固特征,并将其与使用直端口喷嘴的流型和凝固特征进行了比较。讨论了搅拌参数和线料搅拌器的位置对流动和凝固的影响。建议通过切线速度的比较来确定最佳搅拌参数的方法。结果表明,将M-EMS用于四端口SEN可以减弱四端口SEN每个端口的射流冲击强度,并迅速消散熔体的过热并减少模具中的液体分数。尽管模具中壳的生长不均匀,但在相同搅拌强度下,四端口SEN和M-EMS所获得的旋流速度和S-EMS所获得的固相率要高于单端口SEN的旋流速度,这是有利的。用于形成更多等轴晶体。对于S-EMS,在相同搅拌强度下,凝固壳厚度是确定搅拌位置和切向速度的主要因素。对于不同的端口SEN,有必要对M-EMS和S-EMS的搅拌参数进行特定的优化。并迅速消散熔体的过热并减少模具中的液体分数。尽管模具中壳的生长不均匀,但在相同搅拌强度下,四端口SEN和M-EMS所获得的旋流速度和S-EMS所获得的固相率要高于单端口SEN的旋流速度,这是有利的。用于形成更多等轴晶体。对于S-EMS,在相同搅拌强度下,凝固壳厚度是确定搅拌位置和切向速度的主要因素。对于不同的端口SEN,有必要对M-EMS和S-EMS的搅拌参数进行特定的优化。并迅速消散熔体的过热并减少模具中的液体分数。尽管模具中壳的生长不均匀,但在相同搅拌强度下,四端口SEN和M-EMS所获得的旋流速度和S-EMS所获得的固相率要高于单端口SEN的旋流速度,这是有利的。用于形成更多等轴晶体。对于S-EMS,在相同搅拌强度下,凝固壳厚度是确定搅拌位置和切向速度的主要因素。对于不同的端口SEN,有必要对M-EMS和S-EMS的搅拌参数进行特定的优化。四端口SEN和M-EMS的旋流速度和S-EMS的固相率均高于具有相同搅拌强度的单端口SEN的旋流速度,这有利于形成更多等轴晶体。对于S-EMS,在相同搅拌强度下,凝固壳厚度是确定搅拌位置和切向速度的主要因素。对于不同的端口SEN,有必要对M-EMS和S-EMS的搅拌参数进行特定的优化。四端口SEN和M-EMS的旋流速度和S-EMS的固相率均高于具有相同搅拌强度的单端口SEN的旋流速度,这有利于形成更多等轴晶体。对于S-EMS,在相同搅拌强度下,凝固壳厚度是确定搅拌位置和切向速度的主要因素。对于不同的端口SEN,有必要对M-EMS和S-EMS的搅拌参数进行特定的优化。

更新日期:2020-09-25
down
wechat
bug