当前位置: X-MOL 学术Combust. Flame › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Carbon oxidation in turbulent premixed jet flames: A comparative experimental and numerical study of ethylene, n-heptane, and toluene
Combustion and Flame ( IF 4.4 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.combustflame.2020.08.008
Daniel I. Pineda , Laurel Paxton , Nikolaos Perakis , Chuyu Wei , Steven Luna , Hiba Kahouli , Matthias Ihme , Fokion N. Egolfopoulos , R. Mitchell Spearrin

Abstract An experimental and numerical investigation of the thermochemical structure of piloted premixed jet flames was conducted, encompassing laser absorption tomography measurements and large-eddy simulations (LES). The investigation was performed holding laminar flame speed, jet Reynolds number, and surrounding flow conditions constant while considering three different fuel types, namely an alkene, a normal alkane, and an aromatic fuel. Quantitative spatially-resolved thermochemical profiles of carbon monoxide (CO), carbon dioxide (CO2), and temperature obtained from laser absorption tomography were compared against profiles predicted by the simulations for premixed ethylene-, toluene-, and n-heptane-air flames. Variations in flow structure are observed for the different fuels, highlighting fuel-specific chemical effects on the spatial evolution of the flames. Quantitative agreement of laser absorption tomography and LES results is generally observed for all flames, with larger deviations observed in the nozzle-near region for the higher molecular-weight fuels, indicating potential deficiencies in the turbulent mixing models. To the authors’ knowledge, these measurements represent the largest molecular-weight fuels for which quantitative thermochemical data have been reported in a canonical piloted premixed jet-flame configuration. The spatially-resolved experimental measurements of CO, CO2, and gas temperature provide valuable data which can be used as validation targets for the development of turbulent combustion models.

中文翻译:

湍流预混喷射火焰中的碳氧化:乙烯、正庚烷和甲苯的比较实验和数值研究

摘要 对预混喷射火焰的热化学结构进行了实验和数值研究,包括激光吸收断层扫描测量和大涡模拟 (LES)。研究是在保持层流火焰速度、射流雷诺数和周围流动条件不变的情况下进行的,同时考虑了三种不同的燃料类型,即烯烃、正构烷烃和芳烃燃料。从激光吸收断层扫描获得的一氧化碳 (CO)、二氧化碳 (CO2) 和温度的定量空间分辨热化学曲线与预混乙烯-、甲苯-和正庚烷-空气火焰的模拟预测的曲线进行了比较。观察到不同燃料的流动结构变化,强调燃料特定的化学效应对火焰空间演化的影响。对于所有火焰,通常观察到激光吸收断层扫描和 LES 结果的定量一致性,在喷嘴附近区域观察到较高分子量燃料的较大偏差,表明湍流混合模型中存在潜在缺陷。据作者所知,这些测量值代表了最大分子量的燃料,其定量热化学数据已在规范的先导预混喷射火焰配置中报告。CO、CO2 和气体温度的空间分辨实验测量提供了有价值的数据,可用作开发湍流燃烧模型的验证目标。对于所有火焰,通常观察到激光吸收断层扫描和 LES 结果的定量一致性,在喷嘴附近区域观察到较高分子量燃料的较大偏差,表明湍流混合模型中存在潜在缺陷。据作者所知,这些测量值代表了最大分子量的燃料,其定量热化学数据已在规范的先导预混喷射火焰配置中报告。CO、CO2 和气体温度的空间分辨实验测量提供了有价值的数据,可用作开发湍流燃烧模型的验证目标。对于所有火焰,通常观察到激光吸收断层扫描和 LES 结果的定量一致性,在喷嘴附近区域观察到较高分子量燃料的较大偏差,表明湍流混合模型中存在潜在缺陷。据作者所知,这些测量代表了最大分子量的燃料,其定量热化学数据已在规范的先导预混喷射火焰配置中报告。CO、CO2 和气体温度的空间分辨实验测量提供了有价值的数据,可用作开发湍流燃烧模型的验证目标。表明湍流混合模型中的潜在缺陷。据作者所知,这些测量值代表了最大分子量的燃料,其定量热化学数据已在规范的先导预混喷射火焰配置中报告。CO、CO2 和气体温度的空间分辨实验测量提供了有价值的数据,可用作开发湍流燃烧模型的验证目标。表明湍流混合模型中的潜在缺陷。据作者所知,这些测量值代表了最大分子量的燃料,其定量热化学数据已在规范的先导预混喷射火焰配置中报告。CO、CO2 和气体温度的空间分辨实验测量提供了有价值的数据,可用作开发湍流燃烧模型的验证目标。
更新日期:2020-11-01
down
wechat
bug