当前位置: X-MOL 学术Struct. Multidisc. Optim. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A novel space-constrained vehicle suspension mechanism synthesized by a systematic design process employing topology optimization
Structural and Multidisciplinary Optimization ( IF 3.9 ) Pub Date : 2020-07-14 , DOI: 10.1007/s00158-020-02669-2
Suh In Kim , Dongil Shin , Sang Min Han , Seok Won Kang , Seungmin Kwon , Yong-Sub Yi , Yoon Young Kim

Demands on larger motors and battery packs in electric vehicles cause a suspension layout issue not appearing in gas-powered vehicles. Motivated by this need, our research aims to design a new-concept suspension applicable to electric vehicles, where given space-related constraints are satisfied without scarifying their kinematic performance. Here, we propose a three-phase design process for the synthesis of rear suspensions of an electric vehicle: concept topology design, kinematic feature identification, and detailed design. For the concept design to determine the mechanism topology, we employ the topology optimization method developed for mechanism synthesis subjected to a reduced suspension design space as well as a tighter condition on the camber rate—known as yielding better vehicle’s dynamic performance. The next phase is to extract the underlying kinematic features of the synthesized suspension obtained by the topology optimization method as it may be difficult to directly figure out how the synthesized mechanism functions kinematically. For the extraction, we propose a connectivity-mapping technique followed by the wrench calculation. This phase is followed by the final detailed design to meet the specific requirements imposed on the target suspensions. The new suspensions designed by the proposed three-phase design approach will be shown to successfully resolve the suspension layout issue typically encountered in electric vehicles.



中文翻译:

通过拓扑优化的系统设计过程合成的新型空间受限车辆悬架机构

对电动汽车中较大的电动机和电池组的需求导致了在汽油动力汽车中未出现的悬架布局问题。出于这种需求,我们的研究旨在设计一种适用于电动汽车的新概念悬架,在满足给定与空间相关的约束而又不影响其运动性能的前提下。在这里,我们提出了电动汽车后悬架的三相设计过程:概念拓扑设计,运动学特征识别和详细设计。为了确定用于确定机构拓扑的概念设计,我们采用为机构综合开发的拓扑优化方法,该方法在减小的悬架设计空间以及更严格的外倾率条件下-这会产生更好的车辆动态性能。下一阶段是提取通过拓扑优化方法获得的合成悬架的基本运动学特征,因为可能很难直接弄清楚合成机制在运动学上是如何起作用的。对于提取,我们提出了一种连接映射技术,然后进行扳手计算。此阶段之后是最终的详细设计,以满足对目标悬架施加的特定要求。通过拟议的三相设计方法设计的新型悬架将显示出成功解决了电动汽车中常见的悬架布局问题。对于提取,我们提出了一种连接映射技术,然后进行扳手计算。此阶段之后是最终的详细设计,以满足对目标悬架施加的特定要求。通过拟议的三相设计方法设计的新型悬架将显示出成功解决了电动汽车中常见的悬架布局问题。对于提取,我们提出了一种连接映射技术,然后进行扳手计算。此阶段之后是最终的详细设计,以满足对目标悬架施加的特定要求。通过拟议的三相设计方法设计的新型悬架将显示出成功解决了电动汽车中常见的悬架布局问题。

更新日期:2020-08-22
down
wechat
bug