当前位置: X-MOL 学术IEEE J. Photovolt. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Mixed-Phase $\text{SiO}_{\text x}$ Hole Selective Junction Compatible With High Temperatures Used in Industrial Solar Cell Manufacturing
IEEE Journal of Photovoltaics ( IF 3 ) Pub Date : 2020-09-01 , DOI: 10.1109/jphotov.2020.3006979
Philippe Wyss 1 , Josua Stuckelberger 1 , Gizem Nogay 2 , Jorg Horzel 2 , Quentin Jeangros 1 , Iris Mack 1 , Mario Lehmann 1 , Xavier Niquille 1 , Christophe Allebe 2 , Matthieu Despeisse 2 , Franz-Josef Haug 1 , Andrea Ingenito 1 , Philipp Loper 1 , Christophe Ballif 1
Affiliation  

We present a p-type passivating rear contact that complies with integration into standard solar cell manufacturing with phosphorus-diffused front side. Our contact structure consists of a thin SiOx tunneling layer grown by wet chemistry and a stack of layers deposited in one single run by plasma-enhanced chemical vapor deposition. The layers of the stack were tailored to protect the interfacial oxide layer, to act as a source for boron diffusion into the wafer and to connect to the external metallisation with low contact resistivity. We found that this stack tolerated annealing at 900 °C over a wide range of dwell times: for 15 min anneals we obtained dark saturation current densities (Jo) as low as 10 fA·cm−2 (after hydrogenation) and after 12-fold increase of the annealing time to 180 min, J0 was only increased to 12 fA·cm−2. These values corresponded to implied open circuit voltages (iVoc) of 718 and 715 mV, respectively. To test passivating rear contacts under realistic operation conditions, we combined them with an n-type heterojunction into hybrid solar cells. With conversion efficiencies abovementioned 22% and Voc > 705 mV, these devices demonstrated high level of rear surface passivation. Finally, we demonstrated the integration of the hole selective rear contact with a POCl3 diffusion process. To this end, we added a phosphorus diffusion barrier to our layer stack by depositing one additional layer of amorphous SiOx on top of the stack. For symmetric samples with this layer structure on both sides, we observed iVoc values of 714 and 712 mV on n- and p-type silicon wafers after hydrogenation, respectively. Co-diffused cells with POCl3 front diffused emitter and rear passivating contact resulted so far in efficiencies of 20.4% and 20.1% for n- and p-type wafers, respectively.

中文翻译:

一种混合相 $\text{SiO}_{\text x}$ 与高温兼容的空穴选择性结,用于工业太阳能电池制造

我们提出了一种 p 型钝化背面触点,它符合集成到具有磷扩散正面的标准太阳能电池制造中。我们的接触结构由通过湿化学生长的薄 SiOx 隧道层和通过等离子体增强化学气相沉积在一次运行中沉积的堆叠层组成。堆叠的层经过调整以保护界面氧化物层,充当硼扩散到晶片中的源,并以低接触电阻率连接到外部金属化层。我们发现该叠层可以在很宽的停留时间范围内耐受 900 °C 的退火:对于 15 分钟的退火,我们获得了低至 10 fA·cm-2(氢化后)和 12 倍后的暗饱和电流密度 (Jo)将退火时间增加到 180 分钟,J0 仅增加到 12 fA·cm-2。这些值分别对应于 718 和 715 mV 的隐含开路电压 (iVoc)。为了在实际操作条件下测试钝化后触点,我们将它们与 n 型异质结组合成混合太阳能电池。具有上述 22% 的转换效率和 Voc > 705 mV,这些器件表现出高水平的背面钝化。最后,我们展示了空穴选择性后接触与 POCl3 扩散过程的集成。为此,我们通过在堆叠顶部沉积一层额外的非晶 SiOx,为我们的层堆叠添加了一个磷扩散势垒。对于两侧具有这种层结构的对称样品,我们在氢化后在 n 型和 p 型硅晶片上观察到的 iVoc 值分别为 714 和 712 mV。
更新日期:2020-09-01
down
wechat
bug