当前位置: X-MOL 学术IEEE J. Photovolt. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Subcell Segmentation for Current Matching and Design Flexibility in Multijunction Solar Cells
IEEE Journal of Photovoltaics ( IF 3 ) Pub Date : 2020-09-01 , DOI: 10.1109/jphotov.2020.3005630
Christopher E. Valdivia , Karin Hinzer

Subcell segmentation is a method to obtain nearly ideal current-matching while employing nonideal bandgap combinations in high-efficiency multijunction solar cells. By splitting each subcell into multiple semitransparent pn junctions, called segments, current-matching can be satisfied by layer design rather than material selection. This architecture replaces the standard requirement for an optimal combination of bandgaps with a simpler requirement for optimal layer thicknesses in each series-connected segment. The total device current is divided across all segments, reducing the resistive power loss especially under nonuniform illumination or high to extreme concentration. Detailed balance-based analysis of three- and four-subcell devices in both terrestrial concentrator and one-sun space applications demonstrates that the segmented architecture can approach the theoretical efficiency peak using a broad range of physically realizable bandgap combinations. For example, detailed-balance analysis reveals a 7.5%–8.1% absolute efficiency improvement for 1-cm2 segmented cells compared with standard InGaP/InGaAs/Ge designs under 1000-suns AM1.5D illumination. Higher-order segmentation multiplies the number of segments in all subcells by a common multiple, which further reduces the device current, resistive power loss, and segment thicknesses.

中文翻译:

多结太阳能电池中电流匹配和设计灵活性的子电池分割

子电池分割是一种在高效多结太阳能电池中采用非理想带隙组合时获得近乎理想电流匹配的方法。通过将每个子电池分成多个半透明 pn 结,称为段,电流匹配可以通过层设计而不是材料选择来满足。这种架构取代了对带隙最佳组合的标准要求,对每个串联段中的最佳层厚度提出了更简单的要求。总器件电流被分配到所有部分,减少了电阻功率损耗,尤其是在非均匀照明或高度集中的情况下。对地面集中器和单太阳空间应用中的三个和四个子电池设备进行的基于平衡的详细分析表明,分段架构可以使用广泛的物理可实现带隙组合来接近理论效率峰值。例如,详细平衡分析显示,在 1000 太阳 AM1.5D 照明下,与标准 InGaP/InGaAs/Ge 设计相比,1 cm2 分段电池的绝对效率提高了 7.5%–8.1%。高阶分段将所有子单元中的段数乘以公倍数,这进一步降低了器件电流、电阻功率损耗和段厚度。在 1000 太阳 AM1.5D 照明下,与标准 InGaP/InGaAs/Ge 设计相比,1 cm2 分段电池的绝对效率提高了 1%。高阶分段将所有子单元中的段数乘以公倍数,这进一步降低了器件电流、电阻功率损耗和段厚度。在 1000 太阳 AM1.5D 照明下,与标准 InGaP/InGaAs/Ge 设计相比,1 cm2 分段电池的绝对效率提高了 1%。高阶分段将所有子单元中的段数乘以公倍数,这进一步降低了器件电流、电阻功率损耗和段厚度。
更新日期:2020-09-01
down
wechat
bug