当前位置: X-MOL 学术Energy Convers. Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Advanced exergy analysis and risk estimation of novel NH3-H2O and H2O-LiBr integrated vapor absorption refrigeration system
Energy Conversion and Management ( IF 10.4 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.enconman.2020.113348
Vaibhav Jain , Ashu Singhal , Gulshan Sachdeva , S.S. Kachhwaha

Abstract In present work, thermodynamic potential and risk estimation of NH3-H2O and H2O-LiBr integrated vapor absorption refrigeration system (IVARS) have been reported. The performance of IVARS has also been compared with a conventional vapor absorption refrigeration system (VARS) for the same cooling duty. Comparative results show that the proposed configuration can maintain evaporator temperature of −30 °C with 92.1 °C generator temperature, which is 51.6 °C lower than that required in a conventional VARS. Further, coefficient of structural bonds (CSB) values predict that the solution heat exchanger of NH3-H2O subsystem (maximum CSB value 5.28) is the most sensitive heat exchanger; whereas, generator of H2O-LiBr subsystem (minimum CSB value 0.38) is the most efficient heat exchanger of IVARS, but contrary to this, their involvement in total irreversibility is merely 6.7% and 18.6% respectively. Based on 80/20 principle, Pareto chart suggests the designer to focus on improving the efficiency parameter of generators and absorbers of IVARS due to their significant contribution in total irreversibility rate. Hence, advanced exergy analysis has been performed to overcome this dilemma. Interestingly, 19.8% of the irreversible loss in IVARS is found avoidable and can be eradicated by modifying the efficiency parameters of different components of IVARS and 93.7% of irreversibility rate is due to the selected operating parameters of components itself. Moreover, the total annual risk due to toxic fluid ‘ammonia’ in NH3-H2O absorption subsystem is estimated to be US$ 996.6/year and the condenser of NH3-H2O is found to be the major contributor. Present study shows that IVARS has better thermodynamic performance and can be successfully operated using low temperature waste heat with efficient and effective recovery.

中文翻译:

新型 NH3-H2O 和 H2O-LiBr 集成蒸汽吸收式制冷系统的高级火用分析和风险评估

摘要 在目前的工作中,已经报道了NH3-H2O 和H2O-LiBr 集成蒸汽吸收制冷系统(IVARS)的热力学潜力和风险评估。IVARS 的性能还与相同冷却负荷的传统蒸汽吸收式制冷系统 (VARS) 进行了比较。比较结果表明,所提出的配置可以将蒸发器温度保持在 -30 °C,发电机温度为 92.1 °C,比传统 VARS 所需的温度低 51.6 °C。此外,结构键系数 (CSB) 值预测 NH3-H2O 子系统的溶液换热器(最大 CSB 值 5.28)是最敏感的换热器;而 H2O-LiBr 子系统的发生器(最低 CSB 值 0.38)是 IVARS 最有效的热交换器,但与此相反,它们在完全不可逆性中的参与率分别仅为 6.7% 和 18.6%。基于 80/20 原理,帕累托图建议设计者专注于改进 IVARS 发生器和吸收器的效率参数,因为它们对总不可逆率的贡献很大。因此,已经进行了高级火用分析来克服这个困境。有趣的是,发现 IVARS 中 19.8% 的不可逆损失是可以避免的,可以通过修改 IVARS 不同组件的效率参数来消除,93.7% 的不可逆率是由于组件本身选择的运行参数造成的。此外,NH3-H2O 吸收子系统中有毒流体“氨”的年总风险估计为 996.6 美元/年,发现 NH3-H2O 的冷凝器是主要贡献者。
更新日期:2020-11-01
down
wechat
bug