当前位置: X-MOL 学术High Volt. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Understanding insulation failure of nanodielectrics: tailoring carrier energy
High Voltage ( IF 4.4 ) Pub Date : 2019-09-17 , DOI: 10.1049/hve.2019.0122
Shengtao Li 1 , Dongri Xie 1 , Qingquan Lei 1, 2, 3
Affiliation  

Owing to the formation of interface and new feature of which, the properties of nanodielectrics can be improved. ‘Hard/soft interface’ and its trap distribution can be tailored by functionalised groups. Molecular simulation results show that the interaction energy and electrostatic potential are larger for the soft interface, which indicates the greater bonding strength with the polymer matrix and electrostatic force on charge carriers. Charge transport simulation indicates that the accumulation of homo-charges would form a reverse electric field and distort electric field distribution. The injection depth would be restricted at the vicinity of sample/electrodes due to the greater trapping effect of deep traps, thus weakening the distortion in the sample bulk, thereby decreasing carrier energy and delaying the formation of impact ionisation. Based on the accumulation of carrier energy Φ = Eeλ, the idea of suppressing electron free path and carrier energy to enhance the insulation breakdown is confirmed. The classified effects of nanofillers during dc breakdown and corona-resistant are further understood from carrier energy. The introduced interfacial trap is effective in trapping carriers due to the low carrier energy under dc voltage, while ineffective in blocking the energetic charges during corona-discharge, but nanoparticles exert blocking and scattering effect against the energetic charges.



中文翻译:

了解纳米电介质的绝缘失效:调整载流子能量

由于界面的形成和其中的新特征,可以改善纳米电介质的性能。“硬/软界面”及其陷阱分布可以由功能化小组定制。分子模拟结果表明,软界面的相互作用能和静电势较大,表明与聚合物基体的键合强度和电荷载体上的静电力较大。电荷传输模拟表明,同电荷的积累将形成反向电场并扭曲电场分布。由于深阱的更大捕获效果,注入深度将限制在样品/电极附近,从而减弱了样品体积中的畸变,从而降低了载流子能量并延迟了碰撞电离的形成。Φ  =  Eeλ证实了抑制电子自由路径和载流子能量以增强绝缘击穿的想法。从载流子能量可以进一步了解纳米填料在直流击穿和耐电晕期间的分类作用。引入的界面陷阱由于在直流电压下的载流子能量低而可有效地捕获载流子,而在电晕放电期间却无法有效地阻挡高能电荷,但是纳米粒子对高能电荷具有阻挡和散射作用。

更新日期:2019-09-17
down
wechat
bug