当前位置: X-MOL 学术SPE Reserv. Eval. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanics of Foamy Oil during Methane-Based Cyclic Solvent Injection Process for Enhanced Heavy Oil Recovery: A Comprehensive Review
SPE Reservoir Evaluation & Engineering ( IF 2.1 ) Pub Date : 2020-08-01 , DOI: 10.2118/200492-pa
Enoc Basilio 1 , Tayfun Babadagli 1
Affiliation  

Foamy oil flow is a commonly encountered drive mechanism in the primary production (depletion of naturally methane-saturated heavy oil) and secondary stage (cyclic gas—mostly methane—injection after primary production). In the former, among other important parameters, pressure depletion rate has been reported to be the most crucial parameter to control the process. In the latter, type and amount of the gas (also described as “solvent”) and application conditions such as soaking time durations and depletion rates are critical. The cornerstone of the foamy oil behavior relies on its stability, which depends on parameters such as oil viscosity, temperature, dissolved gas ratio, pressure decline rate, and dissolved gas (solvent) composition. Although the process has been investigated and analyzed for different parameters in the literature, the optimal conditions for an efficient process (mainly foamy oil stability) has not been thoroughly understood, especially for the secondary recovery conditions (cyclic solvent injection, CSI). In this paper, internal and external gas drive mechanisms for foamy oil performance are reviewed in detail. The optimal conditions of the applications were compiled and listed for different primary production and secondary recovery stages. Combination of methane with other gases as a CSI practice was also discussed to accelerate the process and reduce cost in an effort to improve efficiency. It is reported that combining methane injection with air as a secondary recovery method can save up to 51% of solvent gas.



中文翻译:

甲烷基循环溶剂注入过程中泡沫油增强稠油采收率的机理:综述

泡沫油流是初级生产(自然甲烷饱和的重油枯竭)和次级阶段(初级生产后的循环气(主要是甲烷)注入)中常见的驱动机制。在前者中,除其他重要参数外,据报道压力消耗率是控制过程的最关键参数。在后者中,气体的类型和数量(也称为“溶剂”)以及诸如浸泡时间持续时间和耗竭率之类的应用条件至关重要。泡沫油行为的基石取决于其稳定性,其稳定性取决于诸如油粘度,温度,溶解气体比率,压力下降速率和溶解气体(溶剂)组成等参数。尽管已针对文献中的不同参数对过程进行了调查和分析,有效过程(主要是泡沫油的稳定性)的最佳条件尚未完全了解,尤其是对于二次采收条件(循环溶剂注入,CSI)。在本文中,详细回顾了内部和外部气体驱动机制对泡沫油性能的影响。汇编了应用程序的最佳条件,并列出了不同的主要生产阶段和次要恢复阶段。还讨论了将甲烷与其他气体结合作为一种CSI实践,以加快流程并降低成本,以提高效率。据报道,将甲烷注入与空气结合作为二次回收方法可以节省多达51%的溶剂气体。特别是对于二级回收条件(循环溶剂注入,CSI)。在本文中,详细回顾了内部和外部气体驱动机制对泡沫油性能的影响。汇编了应用程序的最佳条件,并列出了不同的主要生产阶段和次要恢复阶段。还讨论了将甲烷与其他气体结合作为一种CSI实践,以加快流程并降低成本,以提高效率。据报道,将甲烷注入与空气结合作为二次回收方法可以节省多达51%的溶剂气体。特别是对于二级回收条件(循环溶剂注入,CSI)。在本文中,详细回顾了内部和外部气体驱动机制对泡沫油性能的影响。汇编了应用程序的最佳条件,并列出了不同的主要生产阶段和次要恢复阶段。还讨论了将甲烷与其他气体结合作为一种CSI实践,以加快流程并降低成本,以提高效率。据报道,将甲烷注入与空气结合作为二次回收方法可以节省多达51%的溶剂气体。汇编了应用程序的最佳条件,并列出了不同的主要生产阶段和次要恢复阶段。还讨论了将甲烷与其他气体结合作为一种CSI实践,以加快流程并降低成本,以提高效率。据报道,将甲烷注入与空气结合作为二次回收方法可以节省多达51%的溶剂气体。汇编了应用程序的最佳条件,并列出了不同的主要生产阶段和次要恢复阶段。还讨论了将甲烷与其他气体结合作为一种CSI实践,以加快流程并降低成本,以提高效率。据报道,将甲烷注入与空气结合作为二次回收方法可以节省多达51%的溶剂气体。

更新日期:2020-08-20
down
wechat
bug