当前位置: X-MOL 学术J. Geophys. Res. Oceans › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Elucidating Large‐Scale Atmospheric Controls on Bering Strait Throughflow Variability Using a Data‐Constrained Ocean Model and Its Adjoint
Journal of Geophysical Research: Oceans ( IF 3.6 ) Pub Date : 2020-08-20 , DOI: 10.1029/2020jc016213
An T. Nguyen 1 , Rebecca A. Woodgate 2 , Patrick Heimbach 1
Affiliation  

A regional data‐constrained coupled ocean‐sea ice general circulation model and its adjoint are used to investigate mechanisms controlling the volume transport variability through Bering Strait during 2002 to 2013. Comprehensive time‐resolved sensitivity maps of Bering Strait transport to atmospheric forcing can be accurately computed with the adjoint along the forward model trajectory to identify spatial and temporal scales most relevant to the strait's transport variability. The simulated Bering Strait transport anomaly is found to be controlled primarily by the wind stress on short time scales of order 1 month. Spatial decomposition indicates that on monthly time scales winds over the Bering and the combined Chukchi and East Siberian Seas are the most significant drivers. Continental shelf waves and coastally trapped waves are suggested as the dominant mechanisms for propagating information from the far field to the strait. In years with transport extrema, eastward wind stress anomalies in the Arctic sector are found to be the dominant control, with correlation coefficient of 0.94. This implies that atmospheric variability over the Arctic plays a substantial role in determining Bering Strait flow variability. The near‐linear response of the transport anomaly to wind stress allows for predictive skill at interannual time scales, thus potentially enabling skillful prediction of changes at this important Pacific‐Arctic gateway, provided that accurate measurements of surface winds in the Arctic can be obtained. The novelty of this work is the use of space and time‐resolved adjoint‐based sensitivity maps, which enable detailed dynamical, that is, causal attribution of the impacts of different forcings.

中文翻译:

使用数据约束海洋模型及其伴随物阐明白令海峡通流变率的大规模大气控制

利用区域数据约束的耦合海海冰总循环模型及其伴随变量,研究了控制白令海峡在2002年至2013年间运量变化的机制。可以准确地分析白令海峡运输对大气强迫的综合时间分辨敏感性图沿着前向模型轨迹与伴随计算,以识别与海峡的运输变化最相关的时空尺度。发现模拟的白令海峡运输异常主要受风应力控制,时间约为1个月。空间分解表明,按月度尺度,白令风和楚科奇海与西伯利亚海的合并风是最重要的驱动力。大陆架波和沿海陷波被认为是将信息从远场传播到海峡的主要机制。在具有运输极值的年份,北极地区的东风应力异常是主要控制因素,相关系数为0.94。这意味着北极地区的大气变化在确定白令海峡流量变化中起着重要作用。输气异常对风应力的近线性响应允许在年际时间尺度上进行预测,因此,如果能够获得北极表面风的精确测量值,则有可能熟练地预测这一重要的太平洋北极通道的变化。这项工作的新颖之处在于使用了空间和时间分辨的基于伴随的灵敏度图,
更新日期:2020-09-09
down
wechat
bug