当前位置: X-MOL 学术Geochemistry, Geophys. Geosystems › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Lithosphere‐Asthenosphere Boundary and Partial Melt Estimated Using Marine Magnetotelluric Data at the Central Middle Atlantic Ridge
Geochemistry, Geophysics, Geosystems ( IF 4.480 ) Pub Date : 2020-08-20 , DOI: 10.1029/2020gc009177
Shunguo Wang 1 , Steven Constable 1 , Catherine A. Rychert 2 , Nicholas Harmon 2
Affiliation  

The differential motion between the lithosphere and the asthenosphere is aseismic, so the magnetotelluric (MT) method plays an important role in studying the depth and nature of the lithosphere‐asthenosphere boundary (LAB). In March 2016, we deployed 39 marine MT instruments across the Middle Atlantic Ridge (MAR), 2,000 km away from the African coast, to study the evolution of the LAB with ages out to 45 million years (My). The MT acquisition time was limited to about 60 days by battery life. After analyzing dimensionality and coast effects for the MT data, determinant data were inverted for two‐dimensional resistivity models along two profiles north and south of the Chain Fracture Zone (CFZ). The imaged thickness of the lithospheric lid (>100 Ωm) ranges from 20 to 80 km, generally thickening with age. In the north of CFZ, punctuated low‐resistivity anomalies (<1 Ωm), likely associated with potential partial melts, occur along its base. In the south of CFZ, the base of the resistive lid is demarcated by a low‐resistivity channel (<1 Ωm) most likely fed by deeper melts. Sensitivity analyses and structural recovery tests indicate the robustness of these features. Resistivity models are in good agreement with results of seismic data. These results imply that partial melt is persistent over geologic timescales and that the LAB is dynamic features fed by upward percolation of mantle melt. The melt fraction is about 1–7% based on the resistivity, temperature, pressure, and hydrous basalt models, which is consistent with petrophysical observations.

中文翻译:

利用中大西洋中脊海洋大地电磁数据估算岩石圈-软流圈的边界和部分融解

岩石圈和软流圈之间的差动是抗震的,因此大地电磁(MT)方法在研究岩石圈-软流圈边界(LAB)的深度和性质方面起着重要作用。2016年3月,我们在距非洲海岸2,000公里的中大西洋海脊(MAR)部署了39台海洋MT仪器,以研究LAB的演化,其年龄高达4500万年(我)。根据电池寿命,MT的获取时间限制为约60天。在分析了MT数据的维数和海岸效应后,沿链断裂带(CFZ)北部和南部的两个剖面反演了二维电阻率模型的行列式数据。岩石圈盖的成像厚度(> 100Ωm)范围为20至80 km,通常会随着年龄而增厚。在CFZ的北部,可能会与潜在的部分熔体相关的点蚀低电阻率异常(<1Ωm)沿其底部发生。在CFZ的南部,电阻盖的底部由低电阻率通道(<1Ωm)划分边界,很可能由更深的熔体提供。敏感性分析和结构恢复测试表明了这些功能的坚固性。电阻率模型与地震数据的结果非常吻合。这些结果表明,部分熔体在地质时间尺度上是持久的,而LAB是由地幔熔体向上渗滤提供的动态特征。根据电阻率,温度,压力和含水玄武岩模型,熔体分数约为1–7%,这与岩石物理观测相符。电阻盖的底部由低电阻率通道(<1Ωm)划分边界,很可能是由较深的熔体提供的。敏感性分析和结构恢复测试表明了这些功能的坚固性。电阻率模型与地震数据的结果非常吻合。这些结果表明,部分熔体在地质时间尺度上是持久的,而LAB是由地幔熔体向上渗滤提供的动态特征。根据电阻率,温度,压力和含水玄武岩模型,熔体分数约为1–7%,这与岩石物理观测相符。电阻盖的底部由低电阻率通道(<1Ωm)划分边界,很可能是由较深的熔体提供的。敏感性分析和结构恢复测试表明了这些功能的坚固性。电阻率模型与地震数据的结果非常吻合。这些结果表明,部分熔体在地质时间尺度上是持久的,而LAB是由地幔熔体向上渗滤提供的动态特征。根据电阻率,温度,压力和含水玄武岩模型,熔体分数约为1–7%,这与岩石物理观测相符。电阻率模型与地震数据的结果非常吻合。这些结果表明,部分熔体在地质时间尺度上是持久的,而LAB是由地幔熔体向上渗滤提供的动态特征。根据电阻率,温度,压力和含水玄武岩模型,熔体分数约为1–7%,这与岩石物理观测相符。电阻率模型与地震数据的结果非常吻合。这些结果表明,部分熔体在地质时间尺度上是持久的,而LAB是由地幔熔体向上渗滤提供的动态特征。根据电阻率,温度,压力和含水玄武岩模型,熔体分数约为1–7%,这与岩石物理观测相符。
更新日期:2020-09-14
down
wechat
bug