当前位置: X-MOL 学术Metab. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineered Pseudomonas putida simultaneously catabolizes five major components of corn stover lignocellulose: Glucose, xylose, arabinose, p-coumaric acid, and acetic acid.
Metabolic Engineering ( IF 8.4 ) Pub Date : 2020-08-20 , DOI: 10.1016/j.ymben.2020.08.001
Joshua R Elmore 1 , Gara N Dexter 2 , Davinia Salvachúa 3 , Marykate O'Brien 3 , Dawn M Klingeman 2 , Kent Gorday 2 , Joshua K Michener 2 , Darren J Peterson 3 , Gregg T Beckham 3 , Adam M Guss 2
Affiliation  

Valorization of all major lignocellulose components, including lignin, cellulose, and hemicellulose is critical for an economically viable bioeconomy. In most biochemical conversion approaches, the standard process separately upgrades sugar hydrolysates and lignin. Here, we present a new process concept based on an engineered microbe that could enable simultaneous upgrading of all lignocellulose streams, which has the ultimate potential to reduce capital cost and enable new metabolic engineering strategies. Pseudomonas putida is a robust microorganism capable of natively catabolizing aromatics, organic acids, and D-glucose. We engineered this strain to utilize D-xylose by tuning expression of a heterologous D-xylose transporter, catabolic genes xylAB, and pentose phosphate pathway (PPP) genes tal-tkt. We further engineered L-arabinose utilization via the PPP or an oxidative pathway. This resulted in a growth rate on xylose and arabinose of 0.32 h−1 and 0.38 h−1, respectively. Using the oxidative L-arabinose pathway with the PPP xylose pathway enabled D-glucose, D-xylose, and L-arabinose co-utilization in minimal medium using model compounds as well as real corn stover hydrolysate, with a maximum hydrolysate sugar consumption rate of 3.3 g/L/h. After modifying catabolite repression, our engineered P. putida simultaneously co-utilized five representative compounds from cellulose (D-glucose), hemicellulose (D-xylose, L-arabinose, and acetic acid), and lignin-related compounds (p-coumarate), demonstrating the feasibility of simultaneously upgrading total lignocellulosic biomass to value-added chemicals.



中文翻译:

工程恶臭假单胞菌同时分解代谢玉米秸秆木质纤维素的五种主要成分:葡萄糖、木糖、阿拉伯糖、对香豆酸和乙酸。

包括木质素、纤维素和半纤维素在内的所有主要木质纤维素成分的增值对于经济上可行的生物经济至关重要。在大多数生化转化方法中,标准过程分别升级糖水解物和木质素。在这里,我们提出了一种基于工程微生物的新工艺概念,可以同时升级所有木质纤维素流,具有降低资本成本和实现新的代谢工程策略的最终潜力。恶臭假单胞菌是一种强大的微生物,能够自然地分解代谢芳烃、有机酸和 D-葡萄糖。我们通过调节异源 D-木糖转运蛋白、分解代谢基因xylAB 的表达来设计该菌株以利用 D-木糖和磷酸戊糖途径 (PPP) 基因tal - tkt。我们通过 PPP 或氧化途径进一步设计了 L-阿拉伯糖的利用。这导致木糖和阿拉伯糖的增长率分别为0.32 h -1和0.38 h -1。使用氧化 L-阿拉伯糖途径和 PPP 木糖途径,使用模型化合物和真正的玉米秸秆水解物在基本培养基中实现 D-葡萄糖、D-木糖和 L-阿拉伯糖的共同利用,最大水解物糖消耗率为3.3 克/升/小时。在修饰分解代谢物抑制后,我们的工程恶臭假单胞菌 同时共同使用纤维素(D-葡萄糖)、半纤维素(D-木糖、L-阿拉伯糖和乙酸)和木质素相关化合物(对香豆酸)中的五种代表性化合物,证明了同时升级总木质纤维素生物质的可行性到增值化学品。

更新日期:2020-08-20
down
wechat
bug