当前位置: X-MOL 学术Metall. Mater. Trans. B. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical Analysis of Slag Transfer in the IronArc Process
Metallurgical and Materials Transactions B ( IF 3 ) Pub Date : 2020-08-20 , DOI: 10.1007/s11663-020-01930-9
Jonas L. Svantesson , Mikael Ersson , Matej Imris , Pär G. Jönsson

The IronArc process is a novel approach to ironmaking which aims to reduce the associated CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {CO}}_{2}$$\end{document} emissions. By superheating gas using electricity in a plasma generator (PG) the heat required for the process can be supplied without burning of coke. Reduction of hematite and magnetite ores is facilitated by additions of hydrocarbons from liquid natural gas (LNG). The melting and reduction of ore will produce a molten slag containing 90 pct wüstite, which will be corrosive to most refractory materials. A freeze-lining can prevent refractory wear by separating the molten slag from the refractory. This approach is evaluated in CFD simulations by studying the liquid flow and solidification of the slag using the enthalpy–porosity model in two different slag transfer designs. It was found that a fast moving slag causes a high near-wall turbulence, which prevents solidification in the affected areas. The RSM turbulence model was verified against published experimental research on solidification in flows. It was found to accurately predict the freeze-lining thickness when a steady state was reached, but with lacking accuracy for predicting the time required for formation of said freeze-lining. The results were similar when the k-ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k{-}\omega $$\end{document} SST model was used. A design with a slower flow causes more solidified material on the walls and can protect all areas of the refractory wall from the corrosive slag. A parameter study was done on the effect of viscosity, mushy zone parameter, heat conductivity and mass flow on the amount of solidified material, thickness of solidified material, heat flux, and wall shear stress. In the current geometry, freeze-linings completely protect the refractory for mass flow rates of up to 3 kgs-1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {kg}} \, {\text {s}}^{-1},$$\end{document} and are stable for the expected viscosity (0.05 to 0.3 Pa), heat conductivity (2 Wm-1K-1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {W}}\, {\text {m}}^{-1}\,{\text {K}}^{-1}),$$\end{document} and used mushy zone parameter (10,000).

中文翻译:

电弧炉熔渣转移数值分析

IronArc 工艺是一种新的炼铁方法,旨在减少相关的 CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \ usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {CO}}_{2}$$\end{document} 排放。通过在等离子体发生器 (PG) 中使用电力使气体过热,可以在不燃烧焦炭的情况下提供该过程所需的热量。通过添加来自液态天然气 (LNG) 的碳氢化合物来促进赤铁矿和磁铁矿的还原。矿石的熔化和还原会产生含有 90% 方铁矿的熔渣,这对大多数耐火材料具有腐蚀性。冷冻衬里可以通过将熔渣与耐火材料分离来防止耐火材料磨损。在 CFD 模拟中,通过使用两种不同炉渣转移设计中的焓-孔隙率模型研究炉渣的液体流动和凝固,对这种方法进行了评估。发现快速移动的炉渣会导致高近壁湍流,从而阻止受影响区域的凝固。RSM 湍流模型已根据已发表的关于流动凝固的实验研究进行了验证。发现当达到稳定状态时可以准确地预测冻结衬层厚度,但缺乏预测形成所述冻结衬层所需时间的准确度。当 k-ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{ upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k{-}\omega $$\end{document} SST 模型被使用。流速较慢的设计会在壁上产生更多固化材料,并可以保护耐火壁的所有区域免受腐蚀性熔渣的影响。对粘度、糊状区参数、热导率和质量流量对固化材料量、固化材料厚度、热通量和壁面剪切应力的影响进行了参数研究。在当前的几何形状中,冷冻衬里可以完全保护质量流量高达 3 kgs-1 的耐火材料,
更新日期:2020-08-20
down
wechat
bug