当前位置: X-MOL 学术Wirel. Commun. Mob. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Success Probability Analysis of C-V2X Communications on Irregular Manhattan Grids
Wireless Communications and Mobile Computing ( IF 2.146 ) Pub Date : 2020-08-19 , DOI: 10.1155/2020/2746038
Bin Pan 1 , Hao Wu 1
Affiliation  

To overcome the shortcomings of Dedicated Short Range Communications (DSRC), cellular vehicle-to-everything (C-V2X) communications have been proposed recently, which has a variety of advantages over traditional DSRC, including longer communication range, broader coverage, greater reliability, and smooth evolution path towards 5G. In this paper, we consider an LTE-based C-V2X communications network in irregular Manhattan grids. We model the macrobase stations (MBSs) as a 2D Poisson point process (PPP) and model the roads as a Manhattan Poisson line process (MPLP), with the roadside units (RSUs) modeled as a 1D PPP on each road. As an enhancement architecture to DSRC, C-V2X communications include vehicle-to-vehicle (V2V) communication, vehicle-to-infrastructure (V2I) communication, vehicle-to-pedestrian (V2P) communication, and vehicle-to-network (V2N) communication. Since the spectrum for PC5 interface in 5.9 GHz is quite limited, cellular networks could share some channels to V2I links to improve spectral efficiency. Thus, according to Maximum Power-based Scheme, we adopt the stochastic geometry approach to compute the signal-to-interference ratio- (SIR-) based success probability of a typical vehicle that connects to an RSU or an MBS and the area spectral efficiency of the whole network over shared V2I and V2N downlink channels. In addition, we study the asymptotic characteristics of success probability and provide some design insights according to the impact of several key parameters on success probability.

中文翻译:

曼哈顿不规则网格上C-V2X通信的成功概率分析

为了克服专用短距离通信(DSRC)的缺点,最近提出了蜂窝式车辆到所有(C-V2X)通信,它具有比传统DSRC更大的优势,包括通信距离更长,覆盖范围更广,可靠性更高。 ,并向5G平滑发展。在本文中,我们考虑了曼哈顿不规则网格中基于LTE的C-V2X通信网络。我们将宏基站(MBS)建模为2D泊松点过程(PPP),并将道路建模为曼哈顿泊松线过程(MPLP),而路边单位(RSU)则建模为每条道路上的1D PPP。作为DSRC的增强架构,C-V2X通信包括车对车(V2V)通信,车对基础设施(V2I)通信,车对行人(V2P)通信,以及车辆到网络(V2N)通信。由于5.9 GHz中PC5接口的频谱非常有限,因此蜂窝网络可以共享一些通向V2I链路的信道,以提高频谱效率。因此,根据基于最大功率的方案,我们采用随机几何方法来计算连接到RSU或MBS的典型车辆的基于信号干扰比(SIR)的成功概率和区域频谱效率整个网络在共享的V2I和V2N下行链路信道上的传输。此外,我们研究成功概率的渐近特征,并根据一些关键参数对成功概率的影响提供一些设计见解。蜂窝网络可以共享一些通向V2I链路的信道,以提高频谱效率。因此,根据基于最大功率的方案,我们采用随机几何方法来计算连接到RSU或MBS的典型车辆的基于信号干扰比(SIR)的成功概率和区域频谱效率整个网络在共享的V2I和V2N下行链路信道上的传输。此外,我们研究成功概率的渐近特征,并根据一些关键参数对成功概率的影响提供一些设计见解。蜂窝网络可以共享一些通向V2I链路的信道,以提高频谱效率。因此,根据基于最大功率的方案,我们采用随机几何方法来计算连接到RSU或MBS的典型车辆的基于信号干扰比(SIR)的成功概率和区域频谱效率整个网络在共享的V2I和V2N下行链路信道上的传输。此外,我们研究成功概率的渐近特性,并根据一些关键参数对成功概率的影响提供一些设计见解。我们采用随机几何方法来计算连接到RSU或MBS的典型车辆的基于信号干扰比(SIR)的成功概率以及共享V2I和V2N下行链路上整个网络的区域频谱效率渠道。此外,我们研究成功概率的渐近特性,并根据一些关键参数对成功概率的影响提供一些设计见解。我们采用随机几何方法来计算连接到RSU或MBS的典型车辆的基于信号干扰比(SIR)的成功概率以及共享V2I和V2N下行链路上整个网络的区域频谱效率渠道。此外,我们研究成功概率的渐近特性,并根据一些关键参数对成功概率的影响提供一些设计见解。
更新日期:2020-08-19
down
wechat
bug