当前位置: X-MOL 学术ACS Macro Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
100th Anniversary of Macromolecular Science Viewpoint: Integrated Membrane Systems
ACS Macro Letters ( IF 5.8 ) Pub Date : 2020-08-18 , DOI: 10.1021/acsmacrolett.0c00482
John R Hoffman 1 , William A Phillip 1
Affiliation  

Membranes fabricated from self-assembled materials are one recent example of how polymer science has been leveraged to advance membrane technology. Due to their well-defined nanostructures, the performance of membranes made from these materials is pushing the boundaries of size-selective filtration. Still, there remains a need for higher performance and more selective membranes. The advent of functional membrane platforms that rely on mechanisms beyond steric hindrance (e.g., charge-selective membranes and membrane sorbents) is one approach to realize improved solute–solute selectivity and further advance membrane technology. To date, the lab-scale demonstration of these platforms has often relied on fabrication schemes that require extended processing times. However, in order to translate lab-scale demonstrations to larger-scale implementation, it is critical that the rate of the functionalization scheme is reconciled with membrane manufacturing rates. In this viewpoint, it is postulated that substrates lined by reactive moieties that are amenable to postfabrication modification would enable the production of membranes with controlled nanostructures while providing access to a diverse array of pore wall chemistries. A comparison of reaction and manufacturing rates suggests that mechanisms that exhibit second-order reaction rate constants of at least 1 M–1 s–1 are needed for roll-to-roll processing. Furthermore, for mechanisms that exhibit rate constants greater than 300 M–1 s–1, it may be possible to integrate multiple functional domains over the membrane surface such that useful properties emerge. These multifunctional systems can expand the capabilities of membranes when the patterned chemistries interact at the heterojunctions between domains (e.g., Janus and charge-patterned mosaic membranes) or if they exhibit cooperative responses to external operating conditions (e.g., membrane pumps).

中文翻译:

高分子科学100周年视点:集成膜系统

由自组装材料制成的膜是最近如何利用聚合物科学来推进膜技术的一个例子。由于它们定义明确的纳米结构,由这些材料制成的膜的性能正在推动尺寸选择过滤的界限。尽管如此,仍然需要更高性能和更具选择性的膜。依赖于空间位阻以外机制的功能性膜平台(例如,电荷选择性膜和膜吸附剂)的出现是实现提高溶质-溶质选择性和进一步推进膜技术的一种方法。迄今为止,这些平台的实验室规模演示通常依赖于需要延长处理时间的制造方案。然而,为了将实验室规模的演示转化为更大规模的实施,使功能化方案的速率与膜制造速率相协调是至关重要的。从这个观点来看,假设由可进行后加工修饰的反应性基团衬里的基材将能够生产具有受控纳米结构的膜,同时提供对各种孔壁化学物质的访问。反应和制造速率的比较表明,表现出至少 1 M 的二级反应速率常数的机制 据推测,由可进行后加工修饰的反应性基团衬里的基材将能够生产具有受控纳米结构的膜,同时提供对各种孔壁化学物质的访问。反应和制造速率的比较表明,表现出至少 1 M 的二级反应速率常数的机制 据推测,由可进行后加工修饰的反应性基团衬里的基材将能够生产具有受控纳米结构的膜,同时提供对各种孔壁化学物质的访问。反应和制造速率的比较表明,表现出至少 1 M 的二级反应速率常数的机制卷对卷处理需要–1 s –1 。此外,对于速率常数大于 300 M –1 s –1的机制,可以在膜表面整合多个功能域,从而出现有用的特性。当图案化化学物质在域之间的异质结处相互作用时(例如,Janus 和电荷图案化镶嵌膜),或者如果它们对外部操作条件(例如,膜泵)表现出协同响应,这些多功能系统可以扩展膜的能力。
更新日期:2020-09-15
down
wechat
bug