当前位置: X-MOL 学术Mechatronics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3-D acoustic homing using 2-D asymptotes
Mechatronics ( IF 3.3 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.mechatronics.2020.102407
Arunkumar G.K. , Leena Vachhani

Abstract Calling out using sound is a typical means of meeting or knowing where you are with reference to the sound generating source. In acoustic homing, the autonomous vehicle moves to the (home) location where the sound source is placed. This paper attempts to provide a practical solution for acoustic homing of a small-sized autonomous underwater vehicle (AUV). The AUV maneuvers can be easily decoupled in 2-D motions, yaw, and heave, from the rest of the dynamics. Hence, the steering control law is developed based on a simple idea of following in the direction of 2-D asymptote of hyperbola formed by a Time Difference of Arrival (TDOA) measurement. The proposed steering control law is investigated rigorously for 3-D homing. Our main contribution is in designing a simple scheme for steering control substantiated with theoretical analysis, experimental and simulation results. Proposed method orients the AUV in the direction of the acoustic beacon in two stages, coarse and fine, without explicitly localizing the AUV (as in range or bearing based methods) with respect to the home position. The fine steering control law uses TDOA measurements from a single pair of hydrophones avoiding range and bearing computations from measurements. The fine steering is shown to converge the orientation of AUV in the direction towards the location of the acoustic beacon when the initial orientation of AUV is in ( − π ∕ 2 , + π ∕ 2 ). The proposed coarse steering law limits the location of the acoustic beacon with respect to the AUV within a region where fine steering is applicable. A placement of sensors is worked out that results in placing the sensors at the corners of a simple rectangular frame. The algorithm is demonstrated using experiments performed on the AUV, Matsya 4.0. Moreover, sensitivity analysis and associated simulation in the Robot Operating System (ROS) demonstrate the robustness of the algorithm against errors in TDOA measurements.

中文翻译:

使用 2-D 渐近线的 3-D 声学归位

摘要 使用声音呼唤是根据发声源来认识或了解您所在位置的典型方式。在声学归巢中,自主车辆移动到放置声源的(家)位置。本文试图为小型自主水下航行器(AUV)的声自导提供实用的解决方案。AUV 机动可以很容易地在二维运动、偏航和升沉中与其他动力学分离。因此,转向控制律是基于遵循由到达时间差 (TDOA) 测量形成的双曲线的 2-D 渐近线方向的简单想法而开发的。针对 3-D 归位对所提出的转向控制律进行了严格的研究。我们的主要贡献是设计了一个经过理论分析证实的简单的转向控制方案,实验和模拟结果。所提出的方法将 AUV 定向到声信标的方向,分为粗略和精细两个阶段,而不是相对于原始位置明确定位 AUV(如基于距离或方位的方法)。精细转向控制法则使用来自一对水听器的 TDOA 测量值,避免了测量值的距离和方位计算。当 AUV 的初始方向在 ( − π ∕ 2 , + π ∕ 2 ) 中时,精细转向显示出 AUV 的方向会聚在朝向声学信标位置的方向上。建议的粗略转向法将声学信标相对于 AUV 的位置限制在可应用精细转向的区域内。计算出传感器的放置位置,从而将传感器放置在简单矩形框架的角落处。使用在 AUV Matsya 4.0 上执行的实验演示了该算法。此外,机器人操作系统 (ROS) 中的灵敏度分析和相关模拟证明了该算法对 TDOA 测量错误的稳健性。
更新日期:2020-10-01
down
wechat
bug