当前位置: X-MOL 学术Comput. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multiscale Computational Fluid Dynamics Modeling and Reactor Design of Plasma-Enhanced Atomic Layer Deposition
Computers & Chemical Engineering ( IF 4.3 ) Pub Date : 2020-08-19 , DOI: 10.1016/j.compchemeng.2020.107066
Yichi Zhang , Yangyao Ding , Panagiotis D. Christofides

Plasma-enhanced atomic layer deposition (PEALD) is one of the most widely adopted deposition methods used in the semiconductor industry. It is chosen largely due to its superior ability to deliver ultra-conformal dielectric thin-films with high aspect-ratio surface structures, which are encountered more and more often in the novel design of metal-oxide-semiconductor field-effect transistors (MOSFETs) in the NAND (Not-And)-type flash memory devices. Compared with the traditional thermal ALD method, PEALD allows for lower operating temperature and speeds up the deposition process with the involvement of plasma species. Despite its popularity, the development PEALD operation policies remains a complicated and expensive task, which motivates the construction of an accurate and comprehensive simulation model. While existing models have described the individual or partially coupled domains, none of these models has captured all three domains in the PEALD process: surface reaction, macroscopic gas transport, and plasma generation. In this work, a comprehensive multiscale computational fluid dynamics (CFD) model is developed for a remote PEALD reactor used in the deposition of HfO2 thin-films. First, a previously developed kinetic Monte-Carlo (kMC) model is adapted for the multiscale simulation to describe the surface reactions. Then, two macroscopic models, specifically tailored for the remote plasma reactor, are formulated to describe the dynamic behaviors of the plasma generation and bulk species transport domains, respectively. Additionally, an integrated message passing interface (MPI) scheme is built to couple and resolve the communication between different scales in the model. The model results are then validated with experimental data and an automated workflow is established for model calculations without human intervention. Finally, a set of baseline operating conditions derived from the model simulation results is proposed to guarantee the production of high-quality thin-films.



中文翻译:

等离子体增强原子层沉积的多尺度计算流体动力学建模和反应器设计

等离子体增强原子层沉积(PEALD)是半导体工业中使用最广泛的沉积方法之一。之所以选择它,是因为它具有提供具有高纵横比表面结构的超共形介电薄膜的出色能力,这种新颖的设计在金属氧化物半导体场效应晶体管(MOSFET)的新颖设计中越来越多地出现。在NAND(非与)型闪存设备中。与传统的热ALD方法相比,PEALD允许较低的工作温度并在等离子体种类的参与下加快沉积过程。尽管PEALD的发展很受欢迎,但其发展政策仍然是一项复杂而昂贵的任务,这促使人们构建准确而全面的仿真模型。尽管现有模型描述了单个或部分耦合的域,但这些模型都没有捕获PEALD过程中的所有三个域:表面反应,宏观气体传输和等离子体生成。在这项工作中,为用于HfO沉积的远程PEALD反应器开发了一个全面的多尺度计算流体动力学(CFD)模型。2片薄膜。首先,将先前开发的动力学蒙特卡洛(kMC)模型用于多尺度仿真,以描述表面反应。然后,建立了两个专门为远程等离子体反应器量身定制的宏观模型,分别描述了等离子体产生和大量物质传输域的动态行为。此外,构建了集成的消息传递接口(MPI)方案以耦合和解析模型中不同规模之间的通信。然后使用实验数据验证模型结果,并建立自动工作流程以进行模型计算,而无需人工干预。最后,从模型仿真结果中得出了一组基准操作条件,以保证生产高质量的薄膜。

更新日期:2020-08-19
down
wechat
bug