当前位置: X-MOL 学术Front. Energy Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sequential Combustion in Steam Methane Reformers for Hydrogen and Power Production With CCUS in Decarbonized Industrial Clusters
Frontiers in Energy Research ( IF 3.4 ) Pub Date : 2020-07-09 , DOI: 10.3389/fenrg.2020.00180
Laura Herraiz , Mathieu Lucquiaud , Hannah Chalmers , Jon Gibbins

In future energy supply systems, hydrogen and electricity may be generated in decarbonized industrial clusters using a common infrastructure for natural gas supply, electricity grid and transport and geological storage of CO2. The novel contribution of this article consists of using sequential combustion in a steam methane reforming (SMR) hydrogen plant to allow for capital and operating cost reduction by using a single post-combustion carbon capture system for both the hydrogen process and the combined cycle gas turbine (CCGT) power plant, plus appropriate integration for this new equipment combination. The concept would be widely applied to any post-combustion CO2 capture process. A newly developed, rigorous, gPROMs model of two hydrogen production technologies, covering a wide range of hydrogen production capacities, thermodynamically integrated with commercially available gas turbine engines quantifies the step change in thermal efficiency and hydrogen production efficiency. It includes a generic post-combustion capture technology – a conventional 30%wt MEA process - to quantify the reduction in size of CO2 absorber columns, the most capital intensive part of solvent-based capture systems. For a conventional SMR located downstream of an H-class gas turbine engine, followed by a three-pressure level HRSG and a capture plant with two absorbers, the integrated system produces ca. 696,400 Nm3/h of H2 with a net power output of 651 MWe at a net thermal efficiency of 38.9%LHV. This corresponds to 34 MWe of additional power, increasing efficiency by 4.9% points, and makes one absorber redundant compared to the equivalent non-integrated system producing the same volume of H2. For a dedicated gas heated reformer (GHR) located downstream of an aeroderivative gas turbine engine, followed by a two-pressure level HRSG and a capture plant with one absorber, the integrated system produces ca. 80,750 Nm3/h of H2 with a net power output of 73 MWe and a net thermal efficiency of 54.7%LHV. This corresponds to 13 MWe of additional power output, increasing efficiency by 13.5% points and also makes one absorber redundant. The article also presents new insights for the design and operation of reformers integrated with gas turbines and with CO2 capture.



中文翻译:

CCUS在脱碳产业集群中用甲烷气重整制氢和发电的顺序燃烧

在未来的能源供应系统中,使用通用的天然气供应,电网以及CO 2的运输和地质存储基础设施,可以在脱碳的工业集群中产生氢和电。本文的新颖之处在于,在蒸汽甲烷重整(SMR)氢气装置中使用顺序燃烧,通过使用单个后燃烧碳捕集系统同时用于氢气过程和联合循环燃气轮机,从而降低了投资成本和运营成本(CCGT)发电厂,并为此新设备组合进行适当的集成。该概念将广泛应用于任何燃烧后的CO 2捕获过程。一种新开发的,严格的gPROMs模型,涵盖了两种制氢技术,涵盖了广泛的制氢能力,并与商用燃气轮机进行了热力学集成,从而量化了热效率和制氢效率的阶跃变化。它包括通用的燃烧后捕集技术(一种常规的30%wt MEA工艺),以量化CO 2吸收塔尺寸的减少,CO 2吸收塔是溶剂型捕集系统中资本投入最大的部分。对于位于H级燃气涡轮发动机下游的常规SMR,然后是三压力级HRSG和具有两个吸收器的捕集装置,集成系统可产生约190兆赫的热量。696,400 Nm 3 / h H 2净功率输出为651 MWe,净热效率为LHV 38.9%。这相当于增加了34 MWe的额外功率,将效率提高了4.9%,并且与产生相同体积H 2的同等非集成系统相比,使一个吸收器成为多余。对于位于航改型燃气涡轮发动机下游的专用燃气加热重整器(GHR),然后是两压力级HRSG和带有一个吸收器的捕集装置,该集成系统可产生约20兆瓦。80750 Nm 3 / h H 2,净输出功率为73 MWe,净热效率为LHV 54.7%。这相当于增加了13 MWe的额外功率输出,使效率提高了13.5%点,还使一个吸收器变得多余。本文还为与燃气轮机和CO 2捕集器集成的重整器的设计和操作提供了新见解。

更新日期:2020-08-18
down
wechat
bug