当前位置: X-MOL 学术Int. J. Commun. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design of wide band compact bend triangular resonator artificial magnetic conductor and its application for antenna gain enhancement
International Journal of Communication Systems ( IF 2.1 ) Pub Date : 2020-08-17 , DOI: 10.1002/dac.4591
Maruti Tamrakar 1 , Usha Kiran Kommuri 1
Affiliation  

In this paper, a compact bend triangular resonator (CBTR) structure is proposed as artificial magnetic conductor (AMC) to enhance antenna gain for wide frequency bandwidth. This paper presents the metamaterial properties of the CBTR structure like absorbance and reflection phase. The CBTR unit cell gives in‐phase reflection (0° ± 90°) for 55.2% bandwidth. The CBTR unit‐cell reflection phase analysis is presented for the different height of normal incident wave. The CBTR AMC performance is validated using a wideband dipole antenna. For −6‐dB impedance bandwidth, the standalone dipole antenna covers ultrawide frequency range 3.1–12 GHz and for −10‐dB impedance bandwidth, antenna has dual band frequency response 3.4–4.4 GHz and 8.3–11 GHz. The antenna shows good impedance matching and radiation characteristics for frequency range, where the unit‐cell reflection phase is 135° to 45° for frequency range 2.5–6.5 GHz (bandwidth of 88.8%). The broadside directivity of 7 dBi is achieved for the dipole antenna with CBTR AMC in the frequency range of 2.5–6.5 GHz and broadside gain of >5 dBi in the frequency range of 3.2–6.7 GHz (bandwidth of 70.7%). The antenna efficiency of 60% (minimum) is achieved for the frequency range of 3.68.0 GHz (75.8%). The proposed CBTR design is orthogonally symmetric and is useful for dual‐polarized wideband frequency applications like wireless local area network (WLAN) (2.4–2.5 and 5.15–5.85 GHz) and new radio (NR) 5G sub‐6‐GHz (3.3–5.0 GHz).

中文翻译:

宽带紧凑弯曲三角形谐振器人工磁导体设计及其在天线增益增强中的应用

在本文中,提出了一种紧凑的弯曲三角谐振器(CBTR)结构作为人造磁导体(AMC),以在较宽的频率带宽内提高天线增益。本文介绍了CBTR结构的超材料性质,如吸收度和反射相。CBTR晶胞提供55.2%带宽的同相反射(0°±90°)。针对垂直入射波的不同高度,介绍了CBTR晶胞反射相位分析。使用宽带偶极天线可验证CBTR AMC性能。对于-6dB的阻抗带宽,独立的偶极天线覆盖3.1-12 GHz的超宽频率范围;对于-10dB的阻抗带宽,天线具有3.4-4.4 GHz和8.3-11 GHz的双频带频率响应。该天线在频率范围内显示出良好的阻抗匹配和辐射特性,在2.5-6.5 GHz的频率范围内(带宽为88.8%),晶胞反射相位为135°至45°。使用CBTR AMC的偶极天线在2.5–6.5 GHz的频率范围内可实现7 dBi的宽边方向性,而在3.2–6.7 GHz的频率范围(带宽70.7%)下可实现> 5 dBi的宽边增益。在3.68.0 GHz(75.8%)的频率范围内,天线效率达到了60%(最低)。提议的CBTR设计是正交对称的,可用于双极化宽带频率应用,例如无线局域网(WLAN)(2.4–2.5和5.15–5.85 GHz)和新的无线电(NR)5G sub-6-6 GHz(3.3– 5.0 GHz)。在3.2–6.7 GHz的频率范围内(带宽为70.7%),具有5 GHz的宽边增益> 5 dBi。在3.68.0 GHz(75.8%)的频率范围内,天线效率达到了60%(最低)。提议的CBTR设计是正交对称的,可用于双极化宽带频率应用,例如无线局域网(WLAN)(2.4–2.5和5.15–5.85 GHz)和新的无线电(NR)5G sub-6-6 GHz(3.3– 5.0 GHz)。在3.2–6.7 GHz的频率范围内(带宽为70.7%),具有5 GHz的宽边增益> 5 dBi。在3.68.0 GHz(75.8%)的频率范围内,天线效率达到了60%(最低)。提议的CBTR设计是正交对称的,可用于双极化宽带频率应用,例如无线局域网(WLAN)(2.4–2.5和5.15–5.85 GHz)和新的无线电(NR)5G sub-6-6 GHz(3.3– 5.0 GHz)。
更新日期:2020-10-16
down
wechat
bug