当前位置: X-MOL 学术Transp Porous Media › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Apparent Liquid Permeability in Mixed-Wet Shale Permeable Media
Transport in Porous Media ( IF 2.7 ) Pub Date : 2020-08-17 , DOI: 10.1007/s11242-020-01462-5
Dian Fan , Amin Ettehadtavakkol , Wendong Wang

Apparent liquid permeability (ALP) in ultra-confined permeable media is primarily governed by the pore confinement and fluid–rock interactions. A new ALP model is required to predict the interactive effect of the above two on the flow in mixed-wet, heterogeneous nanoporous media. This study derives an ALP model and integrates the compiled results from molecular dynamics (MD) simulations, scanning electron microscopy, atomic force microscopy, and mercury injection capillary pressure. The ALP model assumes viscous forces, capillary forces, and liquid slippage in tortuous, rough pore throats. Predictions of the slippage of water and octane are validated against MD data reported in the literature. In up-scaling the proposed liquid transport model to the representative-elementary-volume scale, we integrate the geological fractals of the shale rock samples including their pore size distribution, pore throat tortuosity, and pore-surface roughness. Sensitivity results for the ALP indicate that when the pore size is below 100 nm pore confinement allows oil to slip in both hydrophobic and hydrophilic pores, yet it also restricts the ALP due to the restricted intrinsic permeability. The ALP reduces to the well-established Carman–Kozeny equation for no-slip viscous flow in a bundle of capillaries, which reveals a distinguishable liquid flow behavior in shales versus conventional rocks. Compared to the Klinkenberg equation, the proposed ALP model reveals an important insight into the similarities and differences between liquid versus gas flow in shales.

中文翻译:

混合湿页岩可渗透介质中的表观液体渗透率

超密闭渗透介质中的表观液体渗透率 (ALP) 主要受孔隙限制和流体-岩石相互作用控制。需要一个新的 ALP 模型来预测上述两者对混合湿、异质纳米多孔介质中流动的交互作用。本研究推导出了 ALP 模型,并整合了分子动力学 (MD) 模拟、扫描电子显微镜、原子力显微镜和压汞毛细管压力的编译结果。ALP 模型假设在曲折、粗糙的孔喉中存在粘性力、毛细管力和液体滑移。水和辛烷滑移的预测根据文献中报告的 MD 数据进行了验证。在将所提出的液体传输模型放大到具有代表性的基本体积尺度时,我们整合了页岩样品的地质分形,包括它们的孔径分布、孔喉曲折度和孔隙表面粗糙度。ALP 的灵敏度结果表明,当孔径小于 100 nm 时,孔隙限制允许油在疏水和亲水孔隙中滑动,但由于固有渗透率受限,它也限制了 ALP。ALP 简化为用于毛细管束中无滑移粘性流的完善的 Carman-Kozeny 方程,这揭示了页岩与常规岩石中可区分的液体流动行为。与 Klinkenberg 方程相比,所提出的 ALP 模型揭示了对页岩中液体与气体流动之间的异同的重要见解。和孔隙表面粗糙度。ALP 的灵敏度结果表明,当孔径小于 100 nm 时,孔隙限制允许油在疏水和亲水孔隙中滑动,但由于固有渗透率受限,它也限制了 ALP。ALP 简化为用于毛细管束中无滑移粘性流的完善的 Carman-Kozeny 方程,这揭示了页岩与常规岩石中可区分的液体流动行为。与 Klinkenberg 方程相比,所提出的 ALP 模型揭示了对页岩中液体与气体流动之间的异同的重要见解。和孔隙表面粗糙度。ALP 的灵敏度结果表明,当孔径小于 100 nm 时,孔隙限制允许油在疏水和亲水孔隙中滑动,但由于固有渗透率受限,它也限制了 ALP。ALP 简化为用于毛细管束中无滑移粘性流的完善的 Carman-Kozeny 方程,这揭示了页岩与常规岩石中可区分的液体流动行为。与 Klinkenberg 方程相比,所提出的 ALP 模型揭示了对页岩中液体与气体流动之间的异同的重要见解。但由于固有渗透率受限,它也限制了 ALP。ALP 简化为用于毛细管束中无滑移粘性流的完善的 Carman-Kozeny 方程,这揭示了页岩与常规岩石中可区分的液体流动行为。与 Klinkenberg 方程相比,所提出的 ALP 模型揭示了对页岩中液体与气体流动之间的异同的重要见解。但由于固有渗透率受限,它也限制了 ALP。ALP 简化为用于毛细管束中无滑移粘性流的完善的 Carman-Kozeny 方程,这揭示了页岩与常规岩石中可区分的液体流动行为。与 Klinkenberg 方程相比,所提出的 ALP 模型揭示了对页岩中液体与气体流动之间的异同的重要见解。
更新日期:2020-08-17
down
wechat
bug