当前位置: X-MOL 学术Light Sci. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Opto-thermoelectric microswimmers.
Light: Science & Applications ( IF 19.4 ) Pub Date : 2020-08-17 , DOI: 10.1038/s41377-020-00378-5
Xiaolei Peng 1 , Zhihan Chen 1 , Pavana Siddhartha Kollipara 2 , Yaoran Liu 1 , Jie Fang 1 , Linhan Lin 3 , Yuebing Zheng 1, 2
Affiliation  

Inspired by the “run-and-tumble” behaviours of Escherichia coli (E. coli) cells, we develop opto-thermoelectric microswimmers. The microswimmers are based on dielectric-Au Janus particles driven by a self-sustained electrical field that arises from the asymmetric optothermal response of the particles. Upon illumination by a defocused laser beam, the Janus particles exhibit an optically generated temperature gradient along the particle surfaces, leading to an opto-thermoelectrical field that propels the particles. We further discover that the swimming direction is determined by the particle orientation. To enable navigation of the swimmers, we propose a new optomechanical approach to drive the in-plane rotation of Janus particles under a temperature-gradient-induced electrical field using a focused laser beam. Timing the rotation laser beam allows us to position the particles at any desired orientation and thus to actively control the swimming direction with high efficiency. By incorporating dark-field optical imaging and a feedback control algorithm, we achieve automated propelling and navigation of the microswimmers. Our opto-thermoelectric microswimmers could find applications in the study of opto-thermoelectrical coupling in dynamic colloidal systems, active matter, biomedical sensing, and targeted drug delivery.



中文翻译:

光热电微型游泳器。

受到大肠杆菌 ( E. coli ) 细胞“奔跑和翻滚”行为的启发,我们开发了光热电微型游泳器。微型游泳器基于电介质 Au Janus 粒子,由粒子的不对称光热响应产生的自持电场驱动。在散焦激光束照射下,Janus 颗粒沿颗粒表面呈现光学产生的温度梯度,从而产生推动颗粒的光热电场。我们进一步发现,游泳方向是由粒子方向决定的。为了实现游泳者的导航,我们提出了一种新的光机械方法,使用聚焦激光束在温度梯度感应电场下驱动 Janus 粒子的面内旋转。对旋转激光束进行定时使我们能够将粒子定位在任何所需的方向,从而有效地主动控制游动方向。通过结合暗场光学成像和反馈控制算法,我们实现了微型游泳器的自动推进和导航。我们的光热电微型游泳器可以在动态胶体系统、活性物质、生物医学传感和靶向药物输送的光热电耦合研究中找到应用。

更新日期:2020-08-17
down
wechat
bug