当前位置: X-MOL 学术Front Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhancing hydrogen evolution of MoS 2 basal planes by combining single-boron catalyst and compressive strain
Frontiers of Physics ( IF 7.5 ) Pub Date : 2020-08-17 , DOI: 10.1007/s11467-020-0980-6
Zhitao Cui , Wei Du , Chengwei Xiao , Qiaohong Li , Rongjian Sa , Chenghua Sun , Zuju Ma

MoS2 is a promising candidate for hydrogen evolution reaction (HER), while its active sites are mainly distributed on the edge sites rather than the basal plane sites. Herein, a strategy to overcome the inertness of the MoS2 basal surface and achieve high HER activity by combining single-boron catalyst and compressive strain was reported through density functional theory (DFT) computations. The ab initio molecular dynamics (AIMD) simulation on B@MoS2 suggests high thermodynamic and kinetic stability. We found that the rather strong adsorption of hydrogen by B@MoS2 can be alleviated by stress engineering. The optimal stress of −7% can achieve a nearly zero value of ΔGH (~ −0.084 eV), which is close to that of the ideal Pt-SACs for HER. The novel HER activity is attributed to (i) the B-doping brings the active site to the basal plane of MoS2 and reduces the band-gap, thereby increasing the conductivity; (ii) the compressive stress regulates the number of charge transfer between (H)-(B)-(MoS2), weakening the adsorption energy of hydrogen on B@MoS2. Moreover, we constructed a SiN/B@MoS2 heterojunction, which introduces an 8.6% compressive stress for B@MoS2 and yields an ideal ΔGH. This work provides an effective means to achieve high intrinsic HER activity for MoS2.

中文翻译:

通过结合单硼催化剂和压缩应变来增强MoS 2基面的氢逸出

MoS 2是氢释放反应(HER)的有希望的候选者,而其活性位点主要分布在边缘位点而不是基面位点。在本文中,通过密度泛函理论(DFT)计算,报道了一种通过结合单硼催化剂和压缩应变来克服MoS 2基表面惰性并实现高HER活性的策略。B @ MoS 2上的从头算分子动力学(AIMD)模拟表明具有高的热力学和动力学稳定性。我们发现,通过应力工程可以减轻B @ MoS 2对氢的较强吸附。−7%的最佳应力可以使ΔG H的值几乎为零(〜-0.084 eV),接近HER的理想Pt-SAC值。新型HER活性归因于(i)B掺杂将活性位点带到MoS 2的基面并减小了带隙,从而提高了电导率;(ii)压应力调节(H)-(B)-(MoS 2)之间的电荷转移数,削弱了氢在B @ MoS 2上的吸附能。此外,我们构建了的SiN / B @的MoS 2的异质结,其引入8.6%的压缩应力对于B @的MoS 2,并产生一个理想的Δ ģ ħ。这项工作为实现MoS 2的高固有HER活性提供了有效的手段。
更新日期:2020-08-17
down
wechat
bug