当前位置: X-MOL 学术J. Nucl. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Defect cluster and nonequilibrium gas bubble associated growth in irradiated UMo fuels – A cluster dynamics and phase field model
Journal of Nuclear Materials ( IF 3.1 ) Pub Date : 2020-08-15 , DOI: 10.1016/j.jnucmat.2020.152441
Shenyang Hu , Wahyu Setyawan , Benjamin W. Beeler , Jian Gan , Douglas E Burkes

Irradiation examination shows that gas bubble swelling kinetics are much faster after irradiation-induced recrystallization than that prior to recrystallization in U-10 wt% Mo alloy (UMo) fuels. These kinetics imply that gas bubbles in coarse grains and small recrystallized grains have different growth behavior. For the first time, researchers developed a phase-field model of gas bubble evolution integrating microstructure-dependent cluster dynamics to study the gas bubble swelling behavior in the recrystallization zone of UMo fuels. Generation, diffusion, reaction, sink, emission, and clustering of vacancies and interstitials are described by the cluster dynamics model while a phase-field model is used to describe the evolution of nonequilibrium gas bubbles including nucleation and growth. With the coupled model, the effect of defect generation rate, clustering rate, interstitial emission, and sink rates on grain boundaries on the gas bubble evolution are systematically simulated. A set of model parameters (defect generation rate, clustering rate, interstitial emission, and sink rates) is determined by comparing measured and simulated gas bubble swelling kinetics. The results demonstrate that interstitial clustering is one of the important physical mechanisms that results in fast gas bubble swelling kinetics in the recrystallization zone. The developed model can also be extended to study the associated growth of defect and second-phase precipitates often observed in irradiated materials.



中文翻译:

辐照的UMo燃料中的缺陷簇和非平衡气泡相关的增长–簇动力学和相场模型

辐照检查表明,在U-10 wt%Mo合金(UMo)燃料中,辐照引起的重结晶后,气泡膨胀动力学要快于重结晶之前。这些动力学暗示粗晶粒和小的重结晶晶粒中的气泡具有不同的生长行为。研究人员首次建立了气泡演化的相场模型,该模型结合了依赖于微结构的团簇动力学来研究UMo燃料重结晶区中的气泡膨胀行为。空位和间隙的产生,扩散,反应,吸收,发射和聚集,是由聚集动力学模型描述的,而相场模型则用于描述非平衡气泡的演化,包括成核和生长。使用耦合模型 系统地模拟了缺陷产生率,聚集率,间隙发射和下沉率对晶界对气泡演化的影响。通过比较测量和模拟的气泡膨胀动力学,可以确定一组模型参数(缺陷产生率,聚类率,间隙发射率和下沉率)。结果表明,间隙聚集是导致重结晶区中快速气泡膨胀动力学的重要物理机制之一。开发的模型也可以扩展为研究在辐照材料中经常观察到的缺陷和第二相沉淀物的相关生长。通过比较测量和模拟的气泡膨胀动力学,可以确定一组模型参数(缺陷产生率,聚集率,间隙发射和下沉率)。结果表明,间隙聚集是导致重结晶区中快速气泡膨胀动力学的重要物理机制之一。开发的模型也可以扩展为研究在辐照材料中经常观察到的缺陷和第二相沉淀物的相关生长。通过比较测量和模拟的气泡膨胀动力学,可以确定一组模型参数(缺陷产生率,聚集率,间隙发射和下沉率)。结果表明,间隙聚集是导致重结晶区中快速气泡膨胀动力学的重要物理机制之一。开发的模型也可以扩展为研究在辐照材料中经常观察到的缺陷和第二相沉淀物的相关生长。

更新日期:2020-08-31
down
wechat
bug