当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Universal coherence protection in a solid-state spin qubit
Science ( IF 56.9 ) Pub Date : 2020-08-13 , DOI: 10.1126/science.abc5186
Kevin C Miao 1 , Joseph P Blanton 1, 2 , Christopher P Anderson 1, 2 , Alexandre Bourassa 1 , Alexander L Crook 1, 2 , Gary Wolfowicz 1, 3 , Hiroshi Abe 4 , Takeshi Ohshima 4 , David D Awschalom 1, 2, 3
Affiliation  

Dressed for coherence Solid-state qubits based on the electron spin of defects in silicon carbide or diamond provide a robust and versatile architecture for developing quantum technologies. The longer the lifetime of a spin, the more manipulations and quantum calculations can be performed, making for a more powerful quantum computational platform. Miao et al. show that by dressing the spins associated with the divacancy in silicon carbide with microwave photons, the lifetime can be extended by several orders of magnitude into milliseconds (see the Perspective by Hemmer). The technique effectively creates a quiet space for the qubit, thereby protecting it from magnetic, electric, and temperature fluctuations. This approach could be applicable to other architectures and provide a universal route to protecting qubits. Science, this issue p. 1493; see also p. 1432 Spin qubits in silicon carbide can be protected from environmental fluctuations to substantially extend their lifetime. Decoherence limits the physical realization of qubits, and its mitigation is critical for the development of quantum science and technology. We construct a robust qubit embedded in a decoherence-protected subspace, obtained by applying microwave dressing to a clock transition of the ground-state electron spin of a silicon carbide divacancy defect. The qubit is universally protected from magnetic, electric, and temperature fluctuations, which account for nearly all relevant decoherence channels in the solid state. This culminates in an increase of the qubit’s inhomogeneous dephasing time by more than four orders of magnitude (to >22 milliseconds), while its Hahn-echo coherence time approaches 64 milliseconds. Requiring few key platform-independent components, this result suggests that substantial coherence improvements can be achieved in a wide selection of quantum architectures.

中文翻译:

固态自旋量子位中的通用相干保护

基于碳化硅或金刚石中缺陷的电子自旋的固态量子位为开发量子技术提供了强大且通用的架构。自旋的寿命越长,可以执行的操作和量子计算就越多,从而形成更强大的量子计算平台。苗等人。表明通过用微波光子修整与碳化硅双空位相关的自旋,寿命可以延长几个数量级到毫秒(参见 Hemmer 的观点)。该技术有效地为量子位创造了一个安静的空间,从而保护它免受磁、电和温度波动的影响。这种方法可以适用于其他架构,并提供保护量子位的通用途径。科学,这个问题 p。1493; 另见第 碳化硅中的 1432 自旋量子位可以免受环境波动的影响,从而显着延长其使用寿命。退相干限制了量子比特的物理实现,其缓解对于量子科学和技术的发展至关重要。我们构建了一个嵌入退相干保护子空间的强大量子位,通过将微波修整应用于碳化硅双空位缺陷的基态电子自旋的时钟跃迁而获得。量子位普遍受到磁、电和温度波动的保护,这几乎解释了固态中所有相关的退相干通道。这最终导致量子位的非均匀移相时间增加了四个数量级以上(至 >22 毫秒),而其 Hahn 回波相干时间接近 64 毫秒。
更新日期:2020-08-13
down
wechat
bug