当前位置: X-MOL 学术Environ. Sci.: Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Oxidation and adsorption of antimony(III) from surface water using novel Al2O3-supported Fe–Mn binary oxide nanoparticles: effectiveness, dynamic quantitative mechanisms, and life cycle analysis
Environmental Science: Nano ( IF 7.3 ) Pub Date : 2020-08-13 , DOI: 10.1039/d0en00609b
Yang Bai 1, 2, 3, 4, 5 , Fan Wu 1, 2, 3, 4, 5 , Yanyan Gong 1, 2, 3, 4, 5
Affiliation  

Antimony(III) or Sb(III) contamination in surface waters poses a serious threat to the ecological system and human health, and green and cost-effective technologies are urgently needed to mitigate its toxic effects. We green synthesized a novel oxidative sorbent, referred to as Al2O3-supported Fe–Mn binary oxide nanoparticles (Fe–Mn@Al2O3), and investigated its removal effectiveness and dynamic quantitative removal mechanisms of Sb(III) at environmentally relevant levels from simulated surface water. Fe–Mn binary oxides (Fe–Mn) were successfully attached on the surface of Al2O3via intermolecular hydrogen bonding, resulting in the formation of Fe–Mn@Al2O3 with a larger specific surface area, greater oxidizing reactivity, and more sorption sites compared to Fe–Mn. The resulting composite is mainly composed of FeOOH, Fe2O3, MnO2, and Al2O3. Life cycle assessment (LCA) indicated that the Fe–Mn@Al2O3 synthesis met green chemistry principles. Fe–Mn@Al2O3 at a Fe : Al2O3 molar ratio of 1 : 2 displayed an enhanced Sb(III) sorption capacity of 272.2 mg g−1 at pH 6.4 within 48 h. Sorption kinetic data were adequately simulated with the pseudo second-order kinetic model and the intraparticle diffusion model, suggesting that the sorption kinetics were a combination of chemisorption and intraparticle diffusion. The Freundlich isotherm model outperformed the Langmuir model in simulating the sorption isotherm data, which aligns with the heterogeneous surface sorption sites of Fe–Mn@Al2O3. MnO2 in Fe–Mn@Al2O3 oxidized Sb(III) to Sb(V), whereas FeOOH and Al2O3 acted as adsorption sites towards Sb(III) and Sb(V). Most importantly, Fe–Mn@Al2O3 still maintained high sorption efficiencies towards Sb(III) after five consecutive regeneration cycles. The dynamic quantitative removal mechanisms were proposed thereafter. Upon equilibrium, 92.8% of Sb(III) was sorbed by Fe–Mn@Al2O3, and 94.9% of sorbed Sb(III) was oxidized to produce Sb(V) and Mn(II). 59.1% of the formed Sb(V) was adsorbed onto Fe-Mn@Al2O3 and 40.9% of Sb(V) was released into the solution. The new quantitative and mechanistic insights contribute to an improved understanding of the uptake of Sb(III) by Fe–Mn@Al2O3 in natural and engineered systems, and the results may guide further preparation and application of reactive adsorbents for removal of redox-active contaminants from water.

中文翻译:

使用新型Al2O3负载的Fe-Mn二元氧化物纳米颗粒氧化和吸附地表水中的锑(III):有效性,动态定量机制和生命周期分析

地表水中的锑(III)或锑(III)污染严重威胁着生态系统和人类健康,因此迫切需要绿色和具有成本效益的技术来减轻其毒性影响。我们绿色合成了一种新型的氧化吸附剂,称为Al 2 O 3负载的Fe–Mn二元氧化物纳米颗粒(Fe–Mn @ Al 2 O 3),并研究了其去除效果和Sb(III)的动态定量去除机理。模拟地表水的环境相关水平。Fe–Mn二元氧化物(Fe–Mn)通过以下方式成功附着在Al 2 O 3的表面分子间氢键,导致形成Fe-Mn @ Al 2 O 3,比Fe-Mn具有更大的比表面积,更大的氧化反应性和更多的吸附位点。所得的复合材料主要由FeOOH,Fe 2 O 3,MnO 2和Al 2 O 3组成。生命周期评估(LCA)表明,Fe-Mn @ Al 2 O 3的合成符合绿色化学原理。Fe :Al 2 O 3摩尔比为1:2的Fe–Mn @ Al 2 O 3表现出增强的Sb(III)吸附能力,为272.2 mg g在48小时内在pH 6.4 -1下。吸附动力学数据用伪二级动力学模型和颗粒内扩散模型进行了充分模拟,表明吸附动力学是化学吸附和颗粒内扩散的组合。在模拟吸附等温线数据时,Freundlich等温线模型优于Langmuir模型,该模型与Fe–Mn @ Al 2 O 3的非均质表面吸附点一致。Fe–Mn @ Al 2 O 3中的MnO 2将Sb( III)氧化为Sb( V),而FeOOH和Al 2 O 3充当对Sb( III)和Sb( V的吸附位点)。最重要的是,经过五个连续的再生循环后,Fe–Mn @ Al 2 O 3仍保持对Sb(III)的高吸附效率。此后提出了动态定量去除机理。一旦平衡,(SB的92.8%III)由铁-锰@吸附的Al 2 ö 3,和吸附的Sb(94.9%III)被氧化以产生的Sb(V)和Mn(II)。59.1%的形成的Sb(V)吸附到Fe-Mn @ Al 2 O 3上,而40.9%的Sb(V)已发布到解决方案中。新的定量和机理洞察力有助于人们更好地了解天然和工程系统中Fe–Mn @ Al 2 O 3对Fe–Mn @ Al 2 O 3吸收Sb(III)的影响,该结果可能指导进一步制备和应用反应性吸附剂去除氧化还原。 -来自水中的活性污染物。
更新日期:2020-10-17
down
wechat
bug