当前位置: X-MOL 学术Environ. Prog. Sustain. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bench‐scale fermentation for second generation ethanol and hydrogen production by Clostridium thermocellum DSMZ 1313 from sugarcane bagasse
Environmental Progress & Sustainable Energy ( IF 2.8 ) Pub Date : 2020-08-14 , DOI: 10.1002/ep.13516
Qurat‐ul‐Ain Ahmad 1 , Maleeha Manzoor 2, 3 , Asma Chaudhary 1 , Shang‐Tian Yang 4 , Hojae Shim 5 , Javed Iqbal Qazi 6
Affiliation  

Exploration of eco‐friendly energy resources substituting conventional fossil fuels is the real challenge globally. Prospectively, current investigation accentuates the fermentative conversion of low‐cost lignocellulosic biomass waste, sugarcane bagasse (SCB) into bioethanol and biohydrogen exploiting thermophilic cellulolytic bacterium Clostridium thermocellum DSMZ 1313. Initially, the optimization of some key fermentation factors for bioethanol and biohydrogen productions was done in 150 ml serum bottles employing Taguchi orthogonal array L27 (3̂13) experimental design. Results elucidated that the most suitable factors for ethanologenesis were 70 g/L cellulose, 10 g/L corn‐steep liquor (CSL), 15 mg/L ferrous sulfate (FeSO4·6H2O), 1 g/L magnesium chloride (MgCl2·6H2O), pH 7, and 5 days incubation whereas for hydrogen fermentation were 60 g/L cellulose, 30 g/L CSL, 5 mg/L FeSO4·6H2O, 2 g/L MgCl2·6H2O, pH 7, and 3 days incubation. Quantitatively, 7.422 g/L ethanol and 56.891/50 ml hydrogen were produced from cellulose while 6.352 g/L ethanol and 51.685/50 ml hydrogen with H2SO4‐pretreated SCB (substituted with cellulose). Scaled‐up suspended‐cell fermentations in bench‐scale stirred‐tank bioreactor resulted in 11.77% increased ethanol yield (0.239 g ethanol/g of glucose) and twofold higher hydrogen volumes (106.88 ml hydrogen/g of glucose). The employment of SCB directly as substrate for biofuels production has appeared sustainable to meet the high global energy demands.

中文翻译:

DSMZ 1313纤维素酶从甘蔗渣中进行第二代乙醇和氢气生产的台式规模发酵

在全球范围内,探索替代传统矿物燃料的环保能源资源是一项真正的挑战。前瞻性地,当前的研究强调了利用嗜热纤维素分解细菌热纤梭菌DSMZ 1313将低成本木质纤维素生物质废料,甘蔗渣(SCB)发酵转化为生物乙醇和生物氢的方法。最初,已经完成了对生物乙醇和生物氢生产的一些关键发酵因子的优化。使用Taguchi正交阵列L27(3×13)实验设计,在150 ml血清瓶中加样。结果表明,最适合乙醇生成的因素是70 g / L纤维素,10 g / L玉米浸泡液(CSL),15 mg / L硫酸亚铁(FeSO 4 ·6H 2O),1 g / L氯化镁(MgCl 2 ·6H 2 O),pH 7和5天孵育,而对于氢发酵,则使用60 g / L纤维素,30 g / L CSL,5 mg / L FeSO 4 ·6H 2 O,2 g / L MgCl 2 ·6H 2 O,pH 7,孵育3天。从纤维素定量生产7.422 g / L乙醇和56.891 / 50 ml氢,而6.352 g / L乙醇和51.685 / 50 ml氢与H 2 SO 4预处理的SCB(被纤维素取代)。在台式搅拌罐生物反应器中扩大规模的悬浮细胞发酵导致乙醇产量增加11.77%(0.239 g乙醇/ g葡萄糖)和两倍的氢气量(106.88 ml氢气/ g葡萄糖)。为了满足全球对能源的高需求,直接使用渣打银行作为生物燃料生产的基质已显得可持续。
更新日期:2020-08-14
down
wechat
bug