当前位置: X-MOL 学术Biocybern. Biomed. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Understanding the interplay between baroreflex gain, low frequency oscillations, and pulsatility in the neural baroreflex
Biocybernetics and Biomedical Engineering ( IF 6.4 ) Pub Date : 2020-08-13 , DOI: 10.1016/j.bbe.2020.07.008
John V. Ringwood , Hasana Bagnall-Hare

The neural baroreflex, which regulates mean arterial pressure (MAP) via the action of the brain, consists of baroreceptors which measure MAP, and actuators that can produce a change in MAP, such as the heart and parts of the peripheral resistance containing innervated smooth muscle. The brain is the controlling unit, maintaining an appropriate MAP in spite of various disturbances. Under certain circumstances, including haemorrhage and other states of distress, the gain of the neural baroreflex can change, causing low frequency (LF) oscillations (sometimes termed Mayer waves) in blood pressure (BP). Though their purpose is unclear, the origins of these LF oscillations has previously been explained via a nonlinear feedback model, though focusing on the peripheral resistance as an MAP actuator only. The present paper now includes analytical and simulation results explaining the LF oscillation phenomenon for the full neural baroreflex, containing both peripheral resistance (PR) and cardiac branches. However, the main contribution of the paper is to examine the effect of blood pulsatility, or a lack of pulsatility, on the neural baroreflex, and how it's effect can manifest in the presence of LF oscillations. This may have importance in cases where pulsatility is reduced (for example where left-ventricular assist devices are present), or completely absent (for example in turbine-based artificial hearts).



中文翻译:

了解神经反射压力反射中压力反射增益,低频振荡和搏动之间的相互作用

神经压力反射通过大脑的作用来调节平均动脉压(MAP),由测量MAP的压力感受器和可以产生MAP变化的执行器组成,例如心脏和包含神经支配的平滑肌的部分外周阻力。大脑是控制单元,尽管存在各种干扰,但仍保持适当的MAP。在某些情况下,包括出血和其他困扰状态,神经压力反射的增益会改变,从而导致血压(BP)发生低频(LF)振荡(有时称为Mayer波)。尽管它们的目的尚不清楚,但这些低频振荡的起因已通过非线性反馈模型进行了解释,尽管仅将外围电阻作为MAP致动器关注。现在,本文包括分析和模拟结果,解释了整个神经压力反射的LF振荡现象,该现象同时包含周围阻力(PR)和心脏分支。但是,本文的主要贡献是研究血液搏动性或缺乏搏动性对神经压力反射的影响,以及在低频振荡存在时如何体现这种影响。这在脉搏性降低(例如,存在左心室辅助装置的情况)或完全不存在(例如,在基于涡轮机的人工心脏中)的情况下可能具有重要意义。或缺乏搏动性,对神经压力反射,以及在低频振荡的情况下其作用如何体现。这在脉搏性降低(例如,存在左心室辅助装置的情况)或完全不存在(例如,在基于涡轮机的人工心脏中)的情况下可能具有重要意义。或缺乏搏动性,对神经压力反射,以及在低频振荡的情况下其作用如何体现。这在脉搏性降低(例如,存在左心室辅助装置的情况)或完全不存在(例如,在基于涡轮机的人工心脏中)的情况下可能具有重要意义。

更新日期:2020-08-13
down
wechat
bug