当前位置: X-MOL 学术Plasma Chem. Plasma Proc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigation of Non-thermal Plasma Assisted Combustion of Solid Biomass Fuels: Effects on Flue Gas Composition and Efficiency
Plasma Chemistry and Plasma Processing ( IF 3.6 ) Pub Date : 2020-08-12 , DOI: 10.1007/s11090-020-10115-w
Mooktzeng Lim , Amanda R. Lea-Langton

Interest in biomass is increasing due to the environmental benefits compared to fossil fuels. This study investigates a non-thermal plasma (NTP) device that has the potential to reduce dry flue gas loss (DFGL) from biomass combustion. DFGL is an efficiency loss in combustion processes, caused by unutilized heated excess air in the flue gas. Reducing DFGL is complicated by a narrow range of optimum operating conditions for combustion of biomass. In this study, a NTP reactor is integrated with a 150 kWth furnace to investigate the effects of the NTP-generated ozone (produced via high voltages at resonant frequency) on the combustion of biomass and coal. The ozonolysis of the volatile organic compounds (VOC) is also simulated with thermodynamic equilibrium models using FactSage 7.2. The DFGL is determined from the corresponding flue gas compositions. For biomass combustion, increasing NTP intensity from 50 to 224 W decreases the DFGL by 0.2–1.0%. For coal combustion, DFGL increases by 4.6–6.3% with increasing NTP intensity. Simulation results show that with an increase in ozone (10–20 g), the ozonolysis of alkanes and aromatics (0.2 kg respectively) results in a constant or increase in CO2 content by 0.0003%, a reduction in the residual O2 content by 0.002%, consequently decreasing DFGL. Ozonolysis of alkenes increases DFGL as the CO2 content decreases by 0.002% as the amount of ozone increases. The experimental and simulation results indicate that the VOC emitted from the coal in this study is likely to be composed of more alkenes than alkanes.

中文翻译:

固体生物质燃料非热等离子体辅助燃烧的研究:对烟气成分和效率的影响

由于与化石燃料相比的环境效益,对生物质的兴趣正在增加。本研究调查了一种非热等离子体 (NTP) 设备,该设备具有减少生物质燃烧产生的干烟气损失 (DFGL) 的潜力。DFGL 是燃烧过程中的效率损失,由烟道气中未利用的加热过量空气引起。由于生物质燃烧的最佳操作条件范围很窄,因此减少 DFGL 很复杂。在这项研究中,NTP 反应器与 150 kWth 的炉子相结合,以研究 NTP 产生的臭氧(通过谐振频率的高压产生)对生物质和煤燃烧的影响。挥发性有机化合物 (VOC) 的臭氧分解也使用 FactSage 7.2 通过热力学平衡模型进行模拟。DFGL 由相应的烟气成分确定。对于生物质燃烧,将 NTP 强度从 50 W 增加到 224 W 会使 DFGL 降低 0.2-1.0%。对于煤燃烧,随着 NTP 强度的增加,DFGL 增加了 4.6-6.3%。模拟结果表明,随着臭氧(10-20 g)的增加,烷烃和芳烃(分别为 0.2 kg)的臭氧分解导致 CO2 含量恒定或增加 0.0003%,残余 O2 含量减少 0.002% ,因此减少 DFGL。随着臭氧量的增加,CO2 含量降低 0.002%,烯烃的臭氧分解会增加 DFGL。实验和模拟结果表明,本研究中煤排放的 VOC 可能由比烷烃更多的烯烃组成。3% 随着 NTP 强度的增加。模拟结果表明,随着臭氧(10-20 g)的增加,烷烃和芳烃(分别为 0.2 kg)的臭氧分解导致 CO2 含量恒定或增加 0.0003%,残余 O2 含量减少 0.002% ,因此减少 DFGL。随着臭氧量的增加,CO2 含量降低 0.002%,烯烃的臭氧分解会增加 DFGL。实验和模拟结果表明,本研究中煤排放的 VOC 可能由比烷烃更多的烯烃组成。3% 随着 NTP 强度的增加。模拟结果表明,随着臭氧(10-20 g)的增加,烷烃和芳烃(分别为 0.2 kg)的臭氧分解导致 CO2 含量恒定或增加 0.0003%,残余 O2 含量减少 0.002% ,因此减少 DFGL。随着臭氧量的增加,CO2 含量降低 0.002%,烯烃的臭氧分解会增加 DFGL。实验和模拟结果表明,本研究中煤排放的 VOC 可能由比烷烃更多的烯烃组成。随着臭氧量的增加,CO2 含量降低 0.002%,烯烃的臭氧分解会增加 DFGL。实验和模拟结果表明,本研究中煤排放的 VOC 可能由比烷烃更多的烯烃组成。随着臭氧量的增加,CO2 含量降低 0.002%,烯烃的臭氧分解会增加 DFGL。实验和模拟结果表明,本研究中煤排放的 VOC 可能由比烷烃更多的烯烃组成。
更新日期:2020-08-12
down
wechat
bug