当前位置: X-MOL 学术Phytopathology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A defect in the twin-arginine translocation (TAT) pathway decreases the tolerance of Xanthomonas campestris pv. campestris to phenazines.
Phytopathology ( IF 3.2 ) Pub Date : 2020-10-28 , DOI: 10.1094/phyto-03-20-0065-r
Jian Wu 1, 2 , Xiayan Pan 1 , Shu Xu 1 , Yabing Duan 1 , Jueyu Wang 1 , Jianxin Wang 1 , Tongchun Gao 2 , Yong Zhang 2 , Mingguo Zhou 1
Affiliation  

Phenazine-1-carboxylic acid (PCA), a member of phenazines secreted by microorganisms, inhibits the growth of many bacteria and fungi. Xanthomonas campestris pv. campestris is the causal agent of black rot, the most important disease of cruciferous crops worldwide, and is more tolerant to PCA than other Xanthomonas species. Previous studies reported that reactive oxygen species (ROS) scavenging ability is involved in regulating the PCA tolerance of Xanthomonas species. Additionally, the cytochrome c maturation (CCM) system has been found to play a more important role in tolerance to phenazines than the ROS scavenging system. In this study, a highly PCA-sensitive insertion mutant of X. campestris pv. campestris, X-5, was identified and studied. The insertion site of X-5 was found to be in tatB gene (XC_4183), which encodes a subunit of the twin-arginine translocation (TAT) complex. Disruption of the three genes of TAT pathway resulted in decreased biological fitness and reduced tolerance to phenazines in comparison with the wild-type strain 8004. These results imply that the tolerance mechanism of the TAT pathway to phenazines is related to the CCM system, but not due to the ROS scavenging system. Furthermore, respiration-related characteristic tests and peptide analysis suggested that disruption of the TAT complex causes a defect in the cytochrome bc1 complex, which may be involved in the tolerance to phenazines. In summary, this study sheds new light on the critical role of the TAT pathway in influencing the fitness and phenazines tolerance of Xanthomonas species.



中文翻译:

双精氨酸易位(TAT)途径中的缺陷降低了Xanthomonas campestris pv的耐受性。樟脑到吩嗪。

吩嗪-1-羧酸(PCA)是微生物分泌的吩嗪的一种,抑制许多细菌和真菌的生长。Xanthomonas campestris PV。campestris(Xcc)是黑腐病的病因,黑腐病是全世界十字花科作物最重要的疾病,比其他黄单胞菌对PCA的耐受性更高。先前的研究报道,活性氧(ROS)清除能力与黄单胞菌的PCA耐受性有关。另外,已发现细胞色素成熟(CCM)系统在抵抗吩嗪方面比ROS清除系统起着更重要的作用。在这项研究中,鉴定并研究了Xcc的高度PCA敏感性插入突变体X-5。发现X-5的插入位点位于tatB基因(XC_4183)中,它编码双精氨酸易位(TAT)复合体的一个亚基。与野生型8004相比,破坏TAT途径的三个基因导致生物学适应性降低和对吩嗪的耐受性降低。这些结果表明,TAT途径对吩嗪的耐受机制与CCM系统有关,但不是由于到ROS清除系统。此外,与呼吸有关的特征测试和肽分析表明,TAT复合物的破坏会引起细胞色素bc1复合物的缺陷,这可能与吩嗪的耐受性有关。总而言之,这项研究为TAT途径在影响黄单胞菌物种的适应性和吩嗪耐受性中的关键作用提供了新的思路。与野生型8004相比,破坏TAT途径的三个基因导致生物学适应性降低和对吩嗪的耐受性降低。这些结果表明,TAT途径对吩嗪的耐受机制与CCM系统有关,但不是由于到ROS清除系统。此外,与呼吸有关的特征测试和肽分析表明,TAT复合物的破坏会引起细胞色素bc1复合物的缺陷,这可能与吩嗪的耐受性有关。总而言之,这项研究为TAT途径在影响黄单胞菌物种的适应性和吩嗪耐受性中的关键作用提供了新的思路。与野生型8004相比,破坏TAT途径的三个基因导致生物学适应性降低和对吩嗪的耐受性降低。这些结果表明,TAT途径对吩嗪的耐受机制与CCM系统有关,但不是由于到ROS清除系统。此外,与呼吸有关的特征测试和肽分析表明,TAT复合物的破坏会引起细胞色素bc1复合物的缺陷,这可能与吩嗪的耐受性有关。总而言之,这项研究为TAT途径在影响Xanthomonas物种的适应性和吩嗪耐受性中的关键作用提供了新的思路。这些结果暗示,TAT途径对吩嗪的耐受机制与CCM系统有关,但与ROS清除系统无关。此外,与呼吸有关的特征测试和肽分析表明,TAT复合物的破坏会引起细胞色素bc1复合物的缺陷,这可能与吩嗪的耐受性有关。总而言之,这项研究为TAT途径在影响黄单胞菌物种的适应性和吩嗪耐受性中的关键作用提供了新的思路。这些结果暗示TAT途径对吩嗪的耐受机制与CCM系统有关,但与ROS清除系统无关。此外,与呼吸有关的特征测试和肽分析表明,TAT复合物的破坏会引起细胞色素bc1复合物的缺陷,这可能与吩嗪的耐受性有关。总而言之,这项研究为TAT途径在影响黄单胞菌物种的适应性和吩嗪耐受性中的关键作用提供了新的思路。
更新日期:2020-12-05
down
wechat
bug