当前位置: X-MOL 学术Biotechnol. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhancement of cartilage extracellular matrix synthesis in Poly(PCL–TMC)urethane scaffolds: a study of oriented dynamic flow in bioreactor
Biotechnology Letters ( IF 2.7 ) Pub Date : 2020-08-12 , DOI: 10.1007/s10529-020-02983-1
Flavia Pedrini 1, 2 , Moema Hausen 1 , Rodrigo Gomes 1, 2 , Eliana Duek 1, 2
Affiliation  

The development of new technologies to produce three-dimensional and biocompatible scaffolds associated with high-end cell culture techniques have shown to be promising for the regeneration of tissues and organs. Some biomedical devices, as meniscus prosthesis, require high flexibility and tenacity and such features are found in polyurethanes which represent a promising alternative. The Poly(PCL–TMC)urethane here presented, combines the mechanical properties of PCL with the elasticity attributed by TMC and presents great potential as a cellular carrier in cartilage repair. Scanning electron microscopy showed the presence of interconnected pores in the three-dimensional structure of the material. The scaffolds were submitted to proliferation and cell differentiation assays by culturing mesenchymal stem cells in bioreactor. The tests were performed in dynamic flow mode at the rate of 0.4 mL/min. Laser scanning confocal microscopy analysis showed that the flow rate promoted cell growth and cartilage ECM synthesis of aggrecan and type II collagen within the Poly(PCL–TMC)urethane scaffolds. This study demonstrated the applicability of the polymer as a cellular carrier in tissue engineering, as well as the ECM was incremented only when under oriented flow rate stimuli. Therefore, our results may also provide data on how oriented flow rate in dynamic bioreactors culture can influence cell activity towards cartilage ECM synthesis even when specific molecular stimuli are not present. This work addresses new perspectives for future clinical applications in cartilage tissue engineering when the molecular factors resources could be scarce for assorted reasons.

中文翻译:

增强聚(PCL-TMC)氨基甲酸酯支架中软骨细胞外基质合成:生物反应器中定向动态流动的研究

与高端细胞培养技术相关的用于生产三维和生物相容性支架的新技术的发展已被证明有望用于组织和器官的再生。一些生物医学装置,如半月板假体,需要高柔韧性和韧性,聚氨酯具有这些特性,这是一种很有前途的替代品。此处介绍的聚(PCL-TMC)氨基甲酸乙酯将 PCL 的机械性能与 TMC 的弹性相结合,在软骨修复中作为细胞载体具有巨大潜力。扫描电子显微镜显示材料的三维结构中存在相互连接的孔。通过在生物反应器中培养间充质干细胞对支架进行增殖和细胞分化测定。测试在动态流动模式下以 0.4 mL/min 的速率进行。激光扫描共聚焦显微镜分析表明,流速促进了聚 (PCL-TMC) 聚氨酯支架内聚集蛋白聚糖和 II 型胶原蛋白的细胞生长和软骨 ECM 合成。该研究证明了聚合物作为组织工程中的细胞载体的适用性,并且仅当在定向流速刺激下时 ECM 才会增加。因此,我们的结果还可以提供关于动态生物反应器培养中的定向流速如何影响细胞活性对软骨 ECM 合成的数据,即使不存在特定的分子刺激。当分子因子资源因各种原因而稀缺时,这项工作为软骨组织工程的未来临床应用提供了新的视角。
更新日期:2020-08-12
down
wechat
bug