当前位置: X-MOL 学术IEEE Trans. Plasma Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development of a Platform at the Matter in Extreme Conditions End Station for Characterization of Matter Heated by Intense Laser-Accelerated Protons
IEEE Transactions on Plasma Science ( IF 1.5 ) Pub Date : 2020-08-01 , DOI: 10.1109/tps.2020.3009639
Krish Bhutwala , Mathieu Bailly-Grandvaux , Joohwan Kim , Maylis Dozieres , Eric Galtier , Chandra B. Curry , Maxence Gauthier , Eric Cunningham , Hae Ja Lee , Pierre Forestier-Colleoni , Adam Higginson , Nicholas Aybar , Rui Hua , Brandon C. Edghill , Joseph Strehlow , Gilliss M. Dyer , Siegfried H. Glenzer , Jongjin B. Kim , Neil Alexander , Eduardo Del Rio , Mingsheng Wei , Yuan Ping , Andrew McKelvey , Gilbert W. Collins , Farhat N. Beg , Christopher McGuffey

High-intensity short-pulse lasers have made possible the generation of energetic proton beams, unlocking numerous applications in high energy density science. One such application is uniform and isochoric heating of materials to the warm dense matter (WDM) state. We have developed a new experimental platform to simultaneously create and probe WDM at the matter in extreme conditions (MEC) end station at the Linac Coherent Light Source (LCLS). The short pulse optical laser (delivering up to 1 J in 45 fs) and the ultrabright LCLS X-ray laser with tunable frequency, respectively, deliver high power required to heat materials to WDM and precision-timed high-resolution X-rays to probe them. The laser-accelerated proton beam driven from a flat 1.5- $\mu \text{m}$ Cu foil was first measured then directed to a secondary sample of Al or polypropylene (PP), typically 300– $400~\mu \text{m}$ away. The time evolution of the sample electron temperature was measured using streaked optical pyrometry, where we observed a peak temperature of 0.9 ± 0.15 eV on the rear surface of an Al sample heated by the proton beam. Simulations using the hybrid-PIC code LSP and the rad-hydro code HELIOS show that a measured proton beam can heat Al to approximately 4 eV and PP to 1 eV if instead focused by a hemispherical Cu target. Through additional LSP simulations, we anticipate creating hotter WDM states (~20 eV) by increasing the laser energy to 10 J and keeping the other laser parameters fixed.

中文翻译:

极端条件终端站物质平台的开发,用于表征由强激光加速质子加热的物质

高强度短脉冲激光器使产生高能质子束成为可能,开启了高能量密度科学中的众多应用。其中一种应用是将材料均匀等容加热至暖致密物质 (WDM) 状态。我们开发了一个新的实验平台,可以在直线加速器相干光源 (LCLS) 的极端条件 (MEC) 终端站同时创建和探测 WDM。短脉冲光学激光器(在 45 fs 内提供高达 1 J 的能量)和具有可调频率的超亮 LCLS X 射线激光器分别提供将材料加热到 WDM 所需的高功率和精确定时的高分辨率 X 射线以进行探测他们。从平坦的 1.5-$\mu\text{m}$ 铜箔驱动的激光加速质子束首先被测量,然后被引导到铝或聚丙烯(PP)的二次样品,通常 300– $400~\mu \text{m}$ 远。使用条纹光学高温计测量样品电子温度的时间演变,我们在质子束加热的 Al 样品的后表面观察到 0.9 ± 0.15 eV 的峰值温度。使用混合 PIC 代码 LSP 和 rad-hydro 代码 HELIOS 的模拟表明,如果被半球形 Cu 目标聚焦,则测量的质子束可以将 Al 加热到大约 4 eV,将 PP 加热到 1 eV。通过额外的 LSP 模拟,我们预计通过将激光能量增加到 10 J 并保持其他激光参数固定来创建更热的 WDM 状态(~20 eV)。由质子束加热的 Al 样品后表面上的 15 eV。使用混合 PIC 代码 LSP 和 rad-hydro 代码 HELIOS 的模拟表明,如果被半球形 Cu 目标聚焦,则测量的质子束可以将 Al 加热到大约 4 eV,将 PP 加热到 1 eV。通过额外的 LSP 模拟,我们预计通过将激光能量增加到 10 J 并保持其他激光参数固定来创建更热的 WDM 状态(~20 eV)。由质子束加热的 Al 样品后表面上的 15 eV。使用混合 PIC 代码 LSP 和 rad-hydro 代码 HELIOS 的模拟表明,如果被半球形 Cu 目标聚焦,则测量的质子束可以将 Al 加热到大约 4 eV,将 PP 加热到 1 eV。通过额外的 LSP 模拟,我们预计通过将激光能量增加到 10 J 并保持其他激光参数固定来创建更热的 WDM 状态(~20 eV)。
更新日期:2020-08-01
down
wechat
bug