当前位置: X-MOL 学术J. Biomed. Mater. Res. Part B Appl. Biomater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Functions and applications of metallic and metallic oxide nanoparticles in orthopedic implants and scaffolds.
Journal of Biomedical Materials Research Part B: Applied Biomaterials ( IF 3.4 ) Pub Date : 2020-08-09 , DOI: 10.1002/jbm.b.34688
Niyou Wang 1 , Jerry Ying Hsi Fuh 1 , S Thameem Dheen 2 , A Senthil Kumar 1
Affiliation  

Bone defects and diseases are devastating, and can lead to severe functional deficits or even permanent disability. Nevertheless, orthopedic implants and scaffolds can facilitate the growth of incipient bone and help us to treat bone defects and diseases. Currently, a wide range of biomaterials with distinct biocompatibility, biodegradability, porosity, and mechanical strength is used in bone‐related research. However, most orthopedic implants and scaffolds have certain limitations and diverse complications, such as limited corrosion resistance, low cell proliferation, and bacterial adhesion. With recent advancements in materials science and nanotechnology, metallic and metallic oxide nanoparticles have become the subject of significant interest as they offer an ample variety of options to resolve the existing problems in the orthopedic industry. More importantly, these nanoparticles possess unique physicochemical and mechanical properties not found in conventional materials, and can be incorporated into orthopedic implants and scaffolds to enhance their antimicrobial ability, bioactive molecular delivery, mechanical strength, osteointegration, and cell labeling and imaging. However, many metallic and metallic oxide nanoparticles can also be toxic to nearby cells and tissues. This review article will discuss the applications and functions of metallic and metallic oxide nanoparticles in orthopedic implants and bone tissue engineering.

中文翻译:

金属和金属氧化物纳米粒子在骨科植入物和支架中的功能和应用。

骨缺损和疾病是毁灭性的,并可能导致严重的功能缺陷甚至永久性残疾。尽管如此,骨科植入物和支架可以促进初生骨的生长,并帮助我们治疗骨缺损和疾病。目前,具有不同生物相容性、生物降解性、孔隙率和机械强度的多种生物材料被用于骨相关研究。然而,大多数骨科植入物和支架具有一定的局限性和多种并发症,例如有限的耐腐蚀性、低细胞增殖和细菌粘附。随着材料科学和纳米技术的最新进展,金属和金属氧化物纳米粒子已成为人们非常感兴趣的主题,因为它们提供了多种选择来解决骨科行业中的现有问题。更重要的是,这些纳米粒子具有传统材料所没有的独特的物理化学和机械性能,可以整合到骨科植入物和支架中,以增强其抗菌能力、生物活性分子传递、机械强度、骨整合以及细胞标记和成像。然而,许多金属和金属氧化物纳米颗粒也可能对附近的细胞和组织有毒。这篇综述文章将讨论金属和金属氧化物纳米粒子在骨科植入物和骨组织工程中的应用和功能。生物活性分子传递、机械强度、骨整合以及细胞标记和成像。然而,许多金属和金属氧化物纳米颗粒也可能对附近的细胞和组织有毒。这篇综述文章将讨论金属和金属氧化物纳米粒子在骨科植入物和骨组织工程中的应用和功能。生物活性分子传递、机械强度、骨整合以及细胞标记和成像。然而,许多金属和金属氧化物纳米颗粒也可能对附近的细胞和组织有毒。这篇综述文章将讨论金属和金属氧化物纳米粒子在骨科植入物和骨组织工程中的应用和功能。
更新日期:2020-08-09
down
wechat
bug