当前位置: X-MOL 学术Mathematics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stochastic Properties of Confidence Ellipsoids after Least Squares Adjustment, Derived from GUM Analysis and Monte Carlo Simulations
Mathematics ( IF 2.4 ) Pub Date : 2020-08-08 , DOI: 10.3390/math8081318
Wolfgang Niemeier , Dieter Tengen

In this paper stochastic properties are discussed for the final results of the application of an innovative approach for uncertainty assessment for network computations, which can be characterized as two-step approach: As the first step, raw measuring data and all possible influencing factors were analyzed, applying uncertainty modeling in accordance with GUM (Guide to the Expression of Uncertainty in Measurement). As the second step, Monte Carlo (MC) simulations were set up for the complete processing chain, i.e., for simulating all input data and performing adjustment computations. The input datasets were generated by pseudo random numbers and pre-set probability distribution functions were considered for all these variables. The main extensions here are related to an analysis of the stochastic properties of the final results, which are point clouds for station coordinates. According to Cramer’s central limit theorem and Hagen’s elementary error theory, there are some justifications for why these coordinate variations follow a normal distribution. The applied statistical tests on the normal distribution confirmed this assumption. This result allows us to derive confidence ellipsoids out of these point clouds and to continue with our quality assessment and more detailed analysis of the results, similar to the procedures well-known in classical network theory. This approach and the check on normal distribution is applied to the local tie network of Metsähovi, Finland, where terrestrial geodetic observations are combined with Global Navigation Satellite System (GNSS) data.

中文翻译:

最小二乘平差调整后的置信椭球的随机性质,源自GUM分析和蒙特卡洛模拟

在本文中,讨论了使用创新方法进行网络计算不确定性评估的最终结果的随机属性,该方法可分为两步方法:第一步,分析原始测量数据和所有可能的影响因素,按照GUM(测量不确定度表示指南)应用不确定性建模。第二步,为整个处理链建立了蒙特卡洛(MC)仿真,即用于仿真所有输入数据并执行调整计算。输入数据集由伪随机数生成,并且考虑了所有这些变量的预设概率分布函数。这里的主要扩展与最终结果的随机性分析有关,这是测站坐标的点云。根据Cramer的中心极限定理和Hagen的基本误差理论,对于为什么这些坐标变化服从正态分布有一些理由。对正态分布进行的统计检验证实了这一假设。此结果使我们能够从这些点云中得出置信椭圆体,并继续进行质量评估和更详细的结果分析,类似于经典网络理论中众所周知的过程。这种方法和对正态分布的检验被应用于芬兰Metsähovi的本地联络网,在该网中,地面大地观测与全球导航卫星系统(GNSS)数据相结合。根据Cramer的中心极限定理和Hagen的基本误差理论,对于为什么这些坐标变化服从正态分布有一些理由。对正态分布进行的统计检验证实了这一假设。此结果使我们能够从这些点云中得出置信椭圆体,并继续进行质量评估和更详细的结果分析,类似于经典网络理论中众所周知的过程。这种方法和对正态分布的检验被应用于芬兰Metsähovi的本地联络网,在该网中,地面大地观测与全球导航卫星系统(GNSS)数据相结合。根据Cramer的中心极限定理和Hagen的基本误差理论,对于为什么这些坐标变化服从正态分布有一些理由。对正态分布进行的统计检验证实了这一假设。此结果使我们能够从这些点云中得出置信椭圆体,并继续进行质量评估和更详细的结果分析,类似于经典网络理论中众所周知的过程。这种方法和对正态分布的检验被应用于芬兰Metsähovi的本地联络网,在该网中,地面大地观测与全球导航卫星系统(GNSS)数据相结合。对正态分布进行的统计检验证实了这一假设。此结果使我们能够从这些点云中得出置信椭圆体,并继续进行质量评估和更详细的结果分析,类似于经典网络理论中众所周知的过程。这种方法和对正态分布的检验被应用于芬兰Metsähovi的本地联络网,在该网中,地面大地观测与全球导航卫星系统(GNSS)数据相结合。对正态分布进行的统计检验证实了这一假设。此结果使我们能够从这些点云中得出置信椭圆体,并继续进行质量评估和更详细的结果分析,类似于经典网络理论中众所周知的过程。这种方法和对正态分布的检验被应用于芬兰Metsähovi的本地联络网,在该网中,地面大地观测与全球导航卫星系统(GNSS)数据相结合。
更新日期:2020-08-09
down
wechat
bug