当前位置: X-MOL 学术Physiol. Plant › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ion Homeostasis for Salinity Tolerance in Plants: A Molecular Approach
Physiologia Plantarum ( IF 6.4 ) Pub Date : 2020-08-31 , DOI: 10.1111/ppl.13185
Insha Amin 1 , Saiema Rasool 2 , Mudasir A Mir 3 , Wasia Wani 3 , Khalid Z Masoodi 3 , Parvaiz Ahmad 4, 5
Affiliation  

Soil salinity is one of the major environmental stresses faced by the plants. Sodium chloride is the most important salt responsible for inducing salt stress by disrupting the osmotic potential. Due to various innate mechanisms, plants adapt to the sodic niche around them. Genes and transcription factors regulating ion transport and exclusion like Salt Overly Sensitive (SOS), Na+ /H+ Exchangers (NHXs), High Sodium Affinity Transporter (HKT) and Plasma membrane protein (PMP) are activated during salinity stress and help in alleviating cells of ion toxicity. For salt tolerance in plants signal transduction and gene expression is regulated via transcription factors such as NAM (no apical meristem), ATAF (Arabidopsis transcription activation factor), CUC (cup-shaped cotyledon), Apetala 2/Ethylene Responsive Factor (AP2/ERF), W-box binding factor (WRKY) and Basic Leucine Zipper Domain (bZIP).Crosstalk between all these transcription factors and genes aid in developing the tolerance mechanisms adopted by plants against salt stress. These genes and transcription factors regulate the movement of ions out of the cells by opening various membrane ion channels. Mutants or knockouts of all these genes are known to be less salt-tolerant compared to wild types. Using novel molecular techniques like analysis of genome, transcriptome, ionome and metabolome of a plant, can help in expanding the understanding of salt tolerance mechanism in plants. In this review, we discuss the genes responsible for imparting salt tolerance under salinity stress through transport dynamics of ion balance and need to integrate high-throughput molecular biology techniques to delineate the issue. This article is protected by copyright. All rights reserved.

中文翻译:

植物耐盐性的离子稳态:分子方法

土壤盐分是植物面临的主要环境压力之一。氯化钠是最重要的盐,它通过破坏渗透势来引起盐胁迫。由于各种先天机制,植物适应周围的钠生态位。调节离子转运和排斥的基因和转录因子,如盐过度敏感 (SOS)、Na+/H+ 交换剂 (NHXs)、高钠亲和转运蛋白 (HKT) 和质膜蛋白 (PMP) 在盐胁迫期间被激活,有助于减轻细胞的离子毒性。对于植物中的耐盐性信号转导和基因表达通过 NAM(无顶端分生组织)、ATAF(拟南芥转录激活因子)、CUC(杯状子叶)、Apetala 2/乙烯响应因子(AP2/ERF)等转录因子进行调节), W-box 结合因子 (WRKY) 和碱性亮氨酸拉链结构域 (bZIP)。所有这些转录因子和基因之间的串扰有助于发展植物对盐胁迫的耐受机制。这些基因和转录因子通过打开各种膜离子通道来调节离子离开细胞的运动。与野生型相比,已知所有这些基因的突变体或敲除的耐盐性较差。使用新的分子技术,如分析植物的基因组、转录组、离子组和代谢组,有助于扩大对植物耐盐机制的理解。在这篇综述中,我们讨论了在盐胁迫下通过离子平衡的传输动力学赋予耐盐性的基因,并需要整合高通量分子生物学技术来描述这个问题。本文受版权保护。版权所有。
更新日期:2020-08-31
down
wechat
bug