当前位置: X-MOL 学术J. Appl. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Wurtzite quantum well structures under high pressure
Journal of Applied Physics ( IF 3.2 ) Pub Date : 2020-08-07 , DOI: 10.1063/5.0004919
Agata Kaminska 1, 2 , Kamil Koronski 1 , Pawel Strak 3 , Kamil Sobczak 4 , Eva Monroy 5 , Stanislaw Krukowski 3
Affiliation  

Quantum well systems based on semiconductors with the wurtzite crystalline structure have found widespread applications in photonics and optoelectronic devices, such as light-emitting diodes, laser diodes, or single-photon emitters. In these structures, the radiative recombination processes can be affected by (i) the presence of strain and polarization-induced electric fields, (ii) quantum well thickness fluctuations and blurring of a well–barrier interface, and (iii) the presence of dislocations and native point defects (intentional and unintentional impurities). A separate investigation of these phenomena is not straightforward since they give rise to similar effects, such as a decrease of luminescence efficiency and decay rate, enhancement of the Stokes shift, and strong blueshift of the emission with increasing pump intensity. In this Perspective article, we review the usefulness of measurements of the quantum well luminescence as a function of the hydrostatic pressure for both scientific research and the development of light-emitting technologies. The results presented here show that high-pressure investigations combined with ab initio calculations can identify the nature of optical transitions and the main physical factors affecting the radiative efficiency in quantum well systems. Finally, we will discuss an outlook to the further possibilities to gain new knowledge about the nature of recombination processes in quantum wells using high-pressure spectroscopy.

中文翻译:

高压下的纤锌矿量子阱结构

基于具有纤锌矿晶体结构的半导体的量子阱系统已在光子学和光电器件中得到广泛应用,例如发光二极管、激光二极管或单光子发射器。在这些结构中,辐射复合过程可能受到以下因素的影响:(i)应变和极化诱导电场的存在,(ii)量子阱厚度波动和阱-势垒界面的模糊,以及(iii)位错的存在和天然点缺陷(有意和无意的杂质)。对这些现象的单独研究并不简单,因为它们会产生类似的效果,例如发光效率和衰减率的降低、斯托克斯位移的增强以及随着泵浦强度的增加发射的强烈蓝移。在这篇 Perspective 文章中,我们回顾了作为静水压力函数的量子阱发光测量对于科学研究和发光技术开发的有用性。这里呈现的结果表明,高压研究与从头计算相结合可以识别光跃迁的性质和影响量子阱系统辐射效率的主要物理因素。最后,我们将讨论使用高压光谱获得关于量子阱中复合过程性质的新知识的进一步可能性的前景。这里呈现的结果表明,高压研究与从头计算相结合可以识别光跃迁的性质和影响量子阱系统辐射效率的主要物理因素。最后,我们将讨论使用高压光谱获得关于量子阱中复合过程性质的新知识的进一步可能性的前景。此处呈现的结果表明,高压研究与从头计算相结合可以识别光学跃迁的性质和影响量子阱系统辐射效率的主要物理因素。最后,我们将讨论使用高压光谱获得关于量子阱中复合过程性质的新知识的进一步可能性的前景。
更新日期:2020-08-07
down
wechat
bug