当前位置: X-MOL 学术J. Appl. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reflectivity of solid and hollow microsphere composites and the effects of uniform and varying diameters
Journal of Applied Physics ( IF 3.2 ) Pub Date : 2020-08-07 , DOI: 10.1063/5.0015650
Ziqi Yu 1 , Xiao Nie 1 , Anil Yuksel 2 , Jaeho Lee 1
Affiliation  

While solid and hollow microsphere composites have received significant attention as solar reflectors or selective emitters, the driving mechanisms for their optical properties remain relatively unclear. Here, we study the solar reflectivity in the 0.4–2.4 μm wavelength range of solid and hollow microspheres with the diameter varying from 0.125 μm to 8 μm. SiO2 and TiO2 are considered as low- and high-refractive-index microsphere materials, respectively, and polydimethylsiloxane is considered as a polymer matrix. Based on the Mie theory and finite-difference time-domain simulations, our analysis shows that hollow microspheres with a thinner shell are more effective in scattering the light, compared to solid microspheres, and lead to a higher solar reflectivity. The high scattering efficiency, owing to the refractive-index contrast and large interface density, in hollow microspheres allows low-refractive-index materials to have a high solar reflectivity. When the diameter is uniform, 0.75 μm SiO2 hollow microspheres provide the largest solar reflectivity of 0.81. When the diameter is varying, the randomly distributed 0.5–1 μm SiO2 hollow microspheres provide the largest solar reflectivity of 0.84. The effect of varying diameter is characterized by strong backscattering in the electric field. These findings will guide optimal designs of microsphere composites and hierarchical materials for optical and thermal management systems.

中文翻译:

实心和空心微球复合材料的反射率以及均匀和不同直径的影响

虽然实心和空心微球复合材料作为太阳能反射器或选择性发射器受到了极大的关注,但其光学特性的驱动机制仍相对不清楚。在这里,我们研究了直径从 0.125 μm 到 8 μm 的实心和空心微球在 0.4-2.4 μm 波长范围内的太阳反射率。SiO2 和 TiO2 分别被认为是低折射率和高折射率的微球材料,聚二甲基硅氧烷被认为是聚合物基体。基于 Mie 理论和有限差分时域模拟,我们的分析表明,与实心微球相比,具有更薄壳的空心微球在散射光方面更有效,并导致更高的太阳反射率。散射效率高,由于折射率对比和界面密度大,中空微球允许低折射率材料具有高太阳反射率。当直径均匀时,0.75 μm SiO2 空心微球可提供 0.81 的最大太阳反射率。当直径变化时,随机分布的 0.5-1 μm SiO2 空心微球提供 0.84 的最大太阳反射率。改变直径的效应的特点是电场中的强烈反向散射。这些发现将指导用于光学和热管理系统的微球复合材料和分级材料的优化设计。75 μm SiO2 空心微球可提供 0.81 的最大太阳反射率。当直径变化时,随机分布的 0.5-1 μm SiO2 空心微球提供 0.84 的最大太阳反射率。改变直径的效应的特点是电场中的强烈反向散射。这些发现将指导用于光学和热管理系统的微球复合材料和分级材料的优化设计。75 μm SiO2 空心微球可提供 0.81 的最大太阳反射率。当直径变化时,随机分布的 0.5-1 μm SiO2 空心微球提供 0.84 的最大太阳反射率。改变直径的效应的特点是电场中的强烈反向散射。这些发现将指导用于光学和热管理系统的微球复合材料和分级材料的优化设计。
更新日期:2020-08-07
down
wechat
bug