当前位置: X-MOL 学术Processes › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Study to Investigate the Mechanical Properties of Recycled Carbon Fibre/Glass Fibre-Reinforced Epoxy Composites Using a Novel Thermal Recycling Process
Processes ( IF 3.5 ) Pub Date : 2020-08-08 , DOI: 10.3390/pr8080954
Sankar Karuppannan Gopalraj , Timo Kärki

Manufacturing-based carbon fibre-reinforced polymer (CFRP) and glass fibre-reinforced polymer (GFRP) wastes (pre-consumer waste) were recycled to recover valuable carbon fibres (CFs) and glass fibres (GFs), utilising a novel thermal recycling process with a cone calorimeter setup. The ideal conditions to recycle both the fibres occurred at 550 °C in atmospheric pressure. The processing time in the batch reactor to recycle CFs was 20–25 min, and to recycle GFs it was 25–30 min. The recovery rate of the recycled CFs was 95–98 wt%, and for GFs it was 80–82 wt%. Both the recycled fibres possessed a 100–110 mm average length. The resin phase elimination was verified by employing scanning electron microscopy (SEM). Furthermore, the fibres were manually realigned, compression moulded at room temperature, and cured for 24 h by a laminating epoxy resin system. The newly manufactured CFRP and GFRP composites were continuous (uniform length from end to end), unidirectionally oriented (0°), and non-woven. The composites were produced in two fibre volumes: 40 wt% and 60 wt%. The addition of ≈20 wt% recycled CFs increased the tensile strength (TS) by 12%, young modulus (YM) by 34.27% and impact strength (IS) by 7.26%. The addition of ≈20 wt% recycled GFs increased the TS by 75.14%, YM by 12.23% and the IS by 116.16%. The closed-loop recycling approach demonstrated in this study can effectively recycle both CFRP and GFRP manufacturing wastes. Preserving the structural integrity of the recycled fibres could be an advantage, enabling recycling for a specified number of times.

中文翻译:

利用新型热循环工艺研究再生碳纤维/玻璃纤维增​​强环氧树脂复合材料力学性能的研究

基于制造的碳纤维增强聚合物(CFRP)和玻璃纤维增​​强聚合物(GFRP)废物(消费前废物)被回收,以利用新颖的热回收工艺回收有价值的碳纤维(CFs)和玻璃纤维(GFs)锥形量热仪设置。回收两种纤维的理想条件是在大气压下于550°C进行的。在间歇式反应器中,循环利用CFs的处理时间为20-25分钟,循环利用GFs的处理时间为25-30min。回收的CF的回收率为95-98 wt%,GF的回收率为80-82 wt%。两种回收纤维均具有100-110 mm的平均长度。通过使用扫描电子显微镜(SEM)来验证树脂相的消除。此外,将纤维手动重新排列,在室温下压模,并通过层压环氧树脂体系固化24小时。新制造的CFRP和GFRP复合材料是连续的(从一端到另一端的长度均匀),单向取向(0°)和无纺布。以两种纤维体积生产复合材料:40重量%和60重量%。≈20wt%的再生CF的添加使拉伸强度(TS)增大了12%,杨氏模量(YM)增大了34.27%,冲击强度(IS)增大了7.26%。添加约20 wt%的再生GF,可将TS提升75.14%,YM提升12.23%,IS提升116.16%。这项研究中展示的闭环回收方法可以有效地回收CFRP和GFRP生产废料。保留回收纤维的结构完整性可能是一个优势,可以进行指定次数的回收。新制造的CFRP和GFRP复合材料是连续的(从一端到另一端的长度均匀),单向取向(0°)和无纺布。以两种纤维体积生产复合材料:40重量%和60重量%。添加约20 wt%的再生CF,可将拉伸强度(TS)提高12%,杨氏模量(YM)提高34.27%,冲击强度(IS)提高7.26%。添加约20 wt%的再生GF,可将TS提升75.14%,YM提升12.23%,IS提升116.16%。这项研究中展示的闭环回收方法可以有效地回收CFRP和GFRP生产废料。保留回收纤维的结构完整性可能是一个优势,可以进行指定次数的回收。新制造的CFRP和GFRP复合材料是连续的(从一端到另一端的长度均匀),单向取向(0°)和无纺布。以两种纤维体积生产复合材料:40重量%和60重量%。≈20wt%的再生CF的添加使拉伸强度(TS)增大了12%,杨氏模量(YM)增大了34.27%,冲击强度(IS)增大了7.26%。添加约20 wt%的再生GF,可将TS提升75.14%,YM提升12.23%,IS提升116.16%。这项研究中展示的闭环回收方法可以有效地回收CFRP和GFRP生产废料。保留回收纤维的结构完整性可能是一个优势,可以进行指定次数的回收。≈20wt%的再生CF的添加使拉伸强度(TS)增大了12%,杨氏模量(YM)增大了34.27%,冲击强度(IS)增大了7.26%。添加约20 wt%的再生GF,可将TS提升75.14%,YM提升12.23%,IS提升116.16%。这项研究中展示的闭环回收方法可以有效地回收CFRP和GFRP生产废料。保留回收纤维的结构完整性可能是一个优势,可以进行指定次数的回收。添加约20 wt%的再生CF,可将拉伸强度(TS)提高12%,杨氏模量(YM)提高34.27%,冲击强度(IS)提高7.26%。添加约20 wt%的再生GF,可将TS提升75.14%,YM提升12.23%,IS提升116.16%。这项研究中展示的闭环回收方法可以有效地回收CFRP和GFRP生产废料。保留回收纤维的结构完整性可能是一个优势,可以进行指定次数的回收。这项研究中展示的闭环回收方法可以有效地回收CFRP和GFRP生产废料。保留回收纤维的结构完整性可能是一个优势,可以进行指定次数的回收。这项研究中展示的闭环回收方法可以有效地回收CFRP和GFRP生产废料。保留回收纤维的结构完整性可能是一个优势,可以进行指定次数的回收。
更新日期:2020-08-08
down
wechat
bug