当前位置: X-MOL 学术J. Geophys. Res. Space Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Formation of Electron Heat Flux in the Region of Diffuse Aurora
Journal of Geophysical Research: Space Physics ( IF 2.8 ) Pub Date : 2020-08-06 , DOI: 10.1029/2020ja028175
George V. Khazanov 1 , Alex Glocer 1 , Mike Chu 1
Affiliation  

Whistler and electrostatic electron cyclotron harmonics waves are responsible for scattering and precipitating the energetic plasma sheet electrons that drive the diffuse aurora. These primary electrons with energies in the kiloelectron volt range, simultaneously precipitating in magnetically conjugate regions, produce the secondary electron population and can be reflected by the atmosphere back through the magnetosphere and precipitate into the conjugate region with additional follow‐up atmospheric backscatter. Primary, degraded, and secondary electrons can be trapped back into the magnetosphere as they travel back and forth between the two magnetically conjugate ionospheres and continuously delivering their energy to the cold plasma sheet electrons and form the electron thermal fluxes that deposit this energy at the upper ionospheric altitudes. We consider the formation of these heat fluxes focusing on the magnetosphere‐ionosphere energy interplay of the entire superthermal electron spectra from 1 eV up to 10 keV and discuss the efficiency of the different spectral energy intervals that contribute to the electron plasma heating at the magnetospheric altitudes. Our parametric studies at L = 6.8, with lower and upper band chorus whistler wave amplitudes of 10 pT and electron cyclotron harmonic wave amplitudes of 1 mVm−1, indicate the dominant role of the whistler mode in the formation of the electron heat flux coming from the magnetosphere to the ionosphere.

中文翻译:

弥散性极光区域电子热通量的形成

吹口哨声和静电回旋电子谐波负责散射和沉淀驱动扩散极光的高能等离子体薄层电子。能量在千电子伏特范围内的这些一次电子,同时在磁共轭区域中沉淀,产生二次电子种群,可被大气层反射回磁层,并随额外的后续大气背向散射而进入共轭区域。一次,降解和二次电子可以在两个磁共轭电离层之间来回传播时被捕集回磁层,并不断将其能量传递给冷等离子薄层电子,并形成将这些能量沉积在上方的电子热通量。电离层高度。我们考虑这些热通量的形成,重点是从1 eV到10 keV的整个超热电子光谱的磁层-电离层能量相互作用,并讨论了有助于在磁层高度进行电子等离子体加热的不同光谱能量间隔的效率。我们的参数研究L  = 6.8,上下带合唱惠斯勒波幅值为10 pT,电子回旋加速器谐波波幅值为1 mVm -1,表明了惠斯勒模式在形成从磁层到电子流的电子热通量中的主导作用。电离层。
更新日期:2020-08-25
down
wechat
bug