当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D Microstructures of Liquid Crystal Networks with Programmed Voxelated Director Fields.
Advanced Materials ( IF 29.4 ) Pub Date : 2020-08-07 , DOI: 10.1002/adma.202002753
Yubing Guo 1 , Hamed Shahsavan 1, 2 , Metin Sitti 1
Affiliation  

The shape‐shifting behavior of liquid crystal networks (LCNs) and elastomers (LCEs) is a result of an interplay between their initial geometrical shape and their molecular alignment. For years, reliance on either one‐step in situ or two‐step film processing techniques has limited the shape‐change transformations from 2D to 3D geometries. The combination of various fabrication techniques, alignment methods, and chemical formulations developed in recent years has introduced new opportunities to achieve 3D‐to‐3D shape‐transformations in large scales, albeit the precise control of local molecular alignment in microscale 3D constructs remains a challenge. Here, the voxel‐by‐voxel encoding of nematic alignment in 3D microstructures of LCNs produced by two‐photon polymerization using high‐resolution topographical features is demonstrated. 3D LCN microstructures (suspended films, coils, and rings) with designable 2D and 3D director fields with a resolution of 5 µm are achieved. Different shape transformations of LCN microstructures with the same geometry but dissimilar molecular alignments upon actuation are elicited. This strategy offers higher freedom in the shape‐change programming of 3D LCN microstructures and expands their applicability in emerging technologies, such as small‐scale soft robots and devices and responsive surfaces.

中文翻译:

具有编程体素导向场的液晶网络 3D 微观结构。

液晶网络(LCN)和弹性体(LCE)的变形行为是其初始几何形状和分子排列之间相互作用的结果。多年来,对一步原位或两步薄膜加工技术的依赖限制了从 2D 到 3D 几何形状的形状变化。近年来开发的各种制造技术、排列方法​​和化学配方的结合为实现大规模 3D 到 3D 形状转换带来了新的机会,尽管在微型 3D 结构中精确控制局部分子排列仍然是一个挑战。在这里,展示了使用高分辨率地形特征通过双光子聚合产生的 LCN 3D 微观结构中向列排列的体素编码。实现了具有可设计 2D 和 3D 导向场且分辨率为 5 µm 的 3D LCN 微结构(悬浮薄膜、线圈和环)。具有相同几何形状但分子排列不同的 LCN 微结构在驱动时会发生不同的形状转变。该策略为 3D LCN 微结构的形状变化编程提供了更高的自由度,并扩展了它们在新兴技术中的适用性,例如小型软机器人和设备以及响应表面。
更新日期:2020-09-21
down
wechat
bug