当前位置: X-MOL 学术Nano-Micro Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Parallel Nanoimprint Forming of One-Dimensional Chiral Semiconductor for Strain-Engineered Optical Properties
Nano-Micro Letters ( IF 26.6 ) Pub Date : 2020-08-08 , DOI: 10.1007/s40820-020-00493-3
Yixiu Wang 1, 2 , Shengyu Jin 1, 2 , Qingxiao Wang 3 , Min Wu 1, 2 , Shukai Yao 4 , Peilin Liao 4 , Moon J Kim 3 , Gary J Cheng 1, 2 , Wenzhuo Wu 1, 2, 5, 6
Affiliation  

The low-dimensional, highly anisotropic geometries, and superior mechanical properties of one-dimensional (1D) nanomaterials allow the exquisite strain engineering with a broad tunability inaccessible to bulk or thin-film materials. Such capability enables unprecedented possibilities for probing intriguing physics and materials science in the 1D limit. Among the techniques for introducing controlled strains in 1D materials, nanoimprinting with embossed substrates attracts increased attention due to its capability to parallelly form nanomaterials into wrinkled structures with controlled periodicities, amplitudes, orientations at large scale with nanoscale resolutions. Here, we systematically investigated the strain-engineered anisotropic optical properties in Te nanowires through introducing a controlled strain field using a resist-free thermally assisted nanoimprinting process. The magnitude of induced strains can be tuned by adjusting the imprinting pressure, the nanowire diameter, and the patterns on the substrates. The observed Raman spectra from the chiral-chain lattice of 1D Te reveal the strong lattice vibration response under the strain. Our results suggest the potential of 1D Te as a promising candidate for flexible electronics, deformable optoelectronics, and wearable sensors. The experimental platform can also enable the exquisite mechanical control in other nanomaterials using substrate-induced, on-demand, and controlled strains.



中文翻译:

应变工程光学性质的一维手性半导体的平行纳米压印形成。

一维(1D)纳米材料的低维,高度各向异性的几何形状和出色的机械性能,使得精细的应变工程具有大体积的可调谐性,而散装或薄膜材料则难以获得。这种功能为在一维极限中探究有趣的物理学和材料科学提供了前所未有的可能性。在将一维材料中引入可控应变的技术中,具有压印基材的纳米压印技术因其能够将纳米材料平行形成具有周期性,振幅和取向受控且具有纳米级分辨率的起皱结构而引起了越来越多的关注。这里,我们通过使用无抗蚀剂的热辅助纳米压印工艺引入受控应变场,系统地研究了Te纳米线中的应变工程各向异性光学性质。可以通过调节压印压力,纳米线直径和基板上的图案来调整诱发应变的大小。从一维Te的手性链晶格观察到的拉曼光谱显示出在应变下的强晶格振动响应。我们的结果表明1D Te有望成为柔性电子,可变形光电和可穿戴传感器的有希望的候选者。该实验平台还可以利用底物诱导,按需和受控应变对其他纳米材料进行精确的机械控制。可以通过调节压印压力,纳米线直径和基板上的图案来调整诱发应变的大小。从一维Te的手性链晶格观察到的拉曼光谱显示出在应变下的强晶格振动响应。我们的结果表明1D Te有望成为柔性电子,可变形光电和可穿戴传感器的有希望的候选者。该实验平台还可以利用底物诱导,按需和受控应变对其他纳米材料进行精确的机械控制。可以通过调节压印压力,纳米线直径和基板上的图案来调整诱发应变的大小。从一维Te的手性链晶格观察到的拉曼光谱显示出在应变下的强晶格振动响应。我们的结果表明1D Te有望成为柔性电子,可变形光电和可穿戴传感器的有希望的候选者。该实验平台还可以利用底物诱导,按需和受控应变对其他纳米材料进行精确的机械控制。我们的结果表明1D Te有望成为柔性电子,可变形光电和可穿戴传感器的有希望的候选者。该实验平台还可以利用底物诱导,按需和受控应变对其他纳米材料进行精确的机械控制。我们的结果表明1D Te有望成为柔性电子,可变形光电和可穿戴传感器的有希望的候选者。该实验平台还可以利用底物诱导,按需和受控应变对其他纳米材料进行精确的机械控制。

更新日期:2020-08-08
down
wechat
bug