当前位置: X-MOL 学术arXiv.cs.ET › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Machine Learning in Nano-Scale Biomedical Engineering
arXiv - CS - Emerging Technologies Pub Date : 2020-08-05 , DOI: arxiv-2008.02195
Alexandros-Apostolos A. Boulogeorgos, Stylianos E. Trevlakis, Sotiris A. Tegos, Vasilis K. Papanikolaou, and George K. Karagiannidis

Machine learning (ML) empowers biomedical systems with the capability to optimize their performance through modeling of the available data extremely well, without using strong assumptions about the modeled system. Especially in nano-scale biosystems, where the generated data sets are too vast and complex to mentally parse without computational assist, ML is instrumental in analyzing and extracting new insights, accelerating material and structure discoveries, and designing experience as well as supporting nano-scale communications and networks. However, despite these efforts, the use of ML in nano-scale biomedical engineering remains still under-explored in certain areas and research challenges are still open in fields such as structure and material design and simulations, communications and signal processing, and bio-medicine applications. In this article, we review the existing research regarding the use of ML in nano-scale biomedical engineering. In more detail, we first identify and discuss the main challenges that can be formulated as ML problems. These challenges are classified into the three aforementioned main categories. Next, we discuss the state of the art ML methodologies that are used to countermeasure the aforementioned challenges. For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations. Finally, we conclude the article with insightful discussions, that reveal research gaps and highlight possible future research directions.

中文翻译:

纳米级生物医学工程中的机器学习

机器学习 (ML) 使生物医学系统能够通过对可用数据进行非常好的建模来优化其性能,而无需对建模系统使用强假设。特别是在纳米级生物系统中,生成的数据集过于庞大和复杂,在没有计算辅助的情况下无法进行心理解析,ML 有助于分析和提取新见解、加速材料和结构发现、设计经验以及支持纳米级通讯和网络。然而,尽管做出了这些努力,机器学习在纳米级生物医学工程中的应用在某些领域仍然没有得到充分探索,在结构和材料设计与模拟、通信和信号处理以及生物医学等领域的研究挑战仍然存在应用程序。在本文中,我们回顾了有关 ML 在纳米级生物医学工程中使用的现有研究。更详细地,我们首先确定并讨论可以表述为 ML 问题的主要挑战。这些挑战分为上述三个主要类别。接下来,我们讨论用于应对上述挑战的最先进的 ML 方法。对于所介绍的每种方法,都特别强调了其原理、应用和局限性。最后,我们以富有洞察力的讨论结束文章,揭示研究差距并突出未来可能的研究方向。我们首先确定并讨论可以表述为 ML 问题的主要挑战。这些挑战分为上述三个主要类别。接下来,我们讨论用于应对上述挑战的最先进的 ML 方法。对于所介绍的每种方法,都特别强调了其原理、应用和局限性。最后,我们以富有洞察力的讨论结束文章,揭示研究差距并突出未来可能的研究方向。我们首先确定并讨论可以表述为 ML 问题的主要挑战。这些挑战分为上述三个主要类别。接下来,我们讨论用于应对上述挑战的最先进的 ML 方法。对于所介绍的每种方法,都特别强调了其原理、应用和局限性。最后,我们以富有洞察力的讨论结束文章,揭示研究差距并突出未来可能的研究方向。和限制。最后,我们以富有洞察力的讨论结束文章,揭示研究差距并突出未来可能的研究方向。和限制。最后,我们以富有洞察力的讨论结束文章,揭示研究差距并突出未来可能的研究方向。
更新日期:2020-10-22
down
wechat
bug