当前位置: X-MOL 学术Front. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Evaluation of General Synthesis Procedures for Bioflavonoid-Metal Complexes in Air-Saturated Alkaline Solutions.
Frontiers in Chemistry ( IF 5.5 ) Pub Date : 2020-06-08 , DOI: 10.3389/fchem.2020.00589
Yuanyong Yao 1 , Meng Zhang 1 , Laibing He 1 , Yunyang Wang 1 , Shixue Chen 1
Affiliation  

The general synthesis methods of bioflavonoid–metal complexes are considered to be unreliable due to the instability of flavonoids in air-saturated alkaline solutions. In this study, dihydromyricetin (DHM), as a representative bioflavonoid, was selected for complexation with various transition metal ions in an air-saturated alkaline solution to form DHM–metal(II) complexes, following the general synthetic procedure. After characterization, the metal complexes were hydrolyzed to observe the stability of DHM under acidic conditions via HPLC. The effects of synthetic conditions (metal ion, alkalinity, and reflux time) on DHM stability were then investigated by UV-vis spectroscopy and HPLC. Finally, using electron paramagnetic resonance, DHM and its analogs were observed with DMPO (5,5-dimethyl-1-pyrroline-N-oxide) to form a relatively stable free radical adduct. Multiple peaks corresponding to unknown compounds appeared in the LC spectra of the DHM–metal(II) complexes after hydrolysis, indicating that some DHM reacted during synthesis. Subsequently, the transition metal ion and solution alkalinity were found to have notable effects on the stability of free DHM. Furthermore, DHM and several of its analogs generated the superoxide-anion radical in air-saturated alkaline solutions. Their capacities for generating the superoxide anion seemed to correspond to the number and/or location of hydroxyl groups or their configurations. Interestingly, DHM can react with the superoxide anion to transform into myricetin, which involves the abstraction of a C3–H atom from DHM by O2. Therefore, the general synthetic procedure for bioflavonoid–metal complexes in air-saturated alkaline solutions should be improved.



中文翻译:

空气饱和碱性溶液中生物类黄酮-金属配合物的一般合成程序的评估。

由于类黄酮在空气饱和的碱性溶液中不稳定,因此一般的生物类黄酮-金属配合物合成方法不可靠。在这项研究中,按照常规合成程序,选择二氢杨梅素(DHM)作为代表性的生物类黄酮,在空气饱和的碱性溶液中与各种过渡金属离子络合形成DHM-metal(II)络合物。表征后,将金属配合物水解,通过HPLC观察DHM在酸性条件下的稳定性。然后通过紫外可见光谱和HPLC研究合成条件(金属离子,碱度和回流时间)对DHM稳定性的影响。最后,利用电子顺磁共振,用DMPO观察了DHM及其类似物(5,5-二甲基-1-吡咯啉-N-氧化物)形成相对稳定的自由基加合物。水解后,DHM-金属(II)配合物的LC光谱中出现对应于未知化合物的多个峰,表明某些DHM在合成过程中发生了反应。随后,发现过渡金属离子和溶液碱度对游离DHM的稳定性有显着影响。此外,DHM及其一些类似物在空气饱和的碱性溶液中产生了超氧阴离子自由基。它们产生超氧阴离子的能力似乎对应于羟基的数目和/或位置或其构型。有趣的是,DHM可以与超氧阴离子反应转化为杨梅素,这涉及通过O从DHM中提取C3-H原子 水解后,DHM-金属(II)配合物的LC光谱中出现对应于未知化合物的多个峰,表明某些DHM在合成过程中发生了反应。随后,发现过渡金属离子和溶液碱度对游离DHM的稳定性有显着影响。此外,DHM及其一些类似物在空气饱和的碱性溶液中产生了超氧阴离子自由基。它们产生超氧阴离子的能力似乎对应于羟基的数目和/或位置或其构型。有趣的是,DHM可以与超氧阴离子反应转化为杨梅素,这涉及通过O从DHM中提取C3-H原子 水解后,DHM-金属(II)配合物的LC光谱中出现对应于未知化合物的多个峰,表明某些DHM在合成过程中发生了反应。随后,发现过渡金属离子和溶液碱度对游离DHM的稳定性有显着影响。此外,DHM及其一些类似物在空气饱和的碱性溶液中产生了超氧阴离子自由基。它们产生超氧阴离子的能力似乎对应于羟基的数目和/或位置或其构型。有趣的是,DHM可以与超氧阴离子反应转化为杨梅素,这涉及通过O从DHM中提取C3-H原子 发现过渡金属离子和溶液碱度对游离DHM的稳定性有显着影响。此外,DHM及其一些类似物在空气饱和的碱性溶液中产生了超氧阴离子自由基。它们产生超氧阴离子的能力似乎对应于羟基的数目和/或位置或其构型。有趣的是,DHM可以与超氧阴离子反应转化为杨梅素,这涉及通过O从DHM中提取C3-H原子 发现过渡金属离子和溶液碱度对游离DHM的稳定性有显着影响。此外,DHM及其一些类似物在空气饱和的碱性溶液中产生了超氧阴离子自由基。它们产生超氧阴离子的能力似乎对应于羟基的数目和/或位置或其构型。有趣的是,DHM可以与超氧阴离子反应转化为杨梅素,这涉及通过O从DHM中提取C3-H原子 它们产生超氧阴离子的能力似乎对应于羟基的数目和/或位置或其构型。有趣的是,DHM可以与超氧阴离子反应转化为杨梅素,这涉及通过O从DHM中提取C3-H原子 它们产生超氧阴离子的能力似乎对应于羟基的数目和/或位置或其构型。有趣的是,DHM可以与超氧阴离子反应转化为杨梅素,这涉及通过O从DHM中提取C3-H原子2 - 。因此,应改进空气饱和碱性溶液中生物类黄酮-金属配合物的一般合成程序。

更新日期:2020-08-05
down
wechat
bug