当前位置: X-MOL 学术Adv. Eng. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineered Role of SiC Particle Size on Multi‐Length‐Scale Wear Damage of Spark Plasma Sintered Zirconium Diboride
Advanced Engineering Materials ( IF 3.6 ) Pub Date : 2020-08-04 , DOI: 10.1002/adem.202000637
Rubia Hassan 1 , Kantesh Balani 1
Affiliation  

The engineered role of coarse‐SiC (D50 ≈72 μm) and fine‐SiC (D50 ≈3 μm) particles on the wear damage of zirconium boride (ZrB2) is assessed at different length scales. Monolithic ZrB2 and 20 vol% SiC reinforced ZrB2 with SiC of two different particle sizes are consolidated via spark plasma sintering. Wear tests conducted on sintered samples for examining multi‐length scale performance include fretting (micro‐wear), micro‐scratching (meso‐wear) and ball‐on‐disk (macro‐wear), under dry and unlubricated conditions. The damage assessment and wear mechanism, characterised via scanning electron microscopy and optical profilometry, show Hertzian tensile cracking in all the samples at loads ≥5 N during micro‐scratching. Wear volume, wear rate and coefficient of friction (cof) decreased with SiC reinforcement during macro‐wear. Fine‐SiC reinforced ZrB2 (ZSF) composite showed least cracking at loads ≥5 N owing to its highest fracture toughness (4.6 MPa m1/2) as compared to coarse‐SiC reinforced composite (ZSC, 2.1 MPa m1/2) and monolithic ZrB2 (3.9 MPa m1/2). Hardness of composites increases as compared to ZrB2, and ZSF shows enhanced elastic modulus and fracture toughness. In summary, superiority of ZSF in terms of improved mechanical performance and wear resistance makes it a potential high‐end material for aerospace applications, where particles with high surface impact may cause material deformation and removal.

中文翻译:

SiC颗粒尺寸对火花等离子体烧结二硼化锆多尺度磨损的工程作用

粗SiC(下的工程化的作用d 50 ≈72微米)和细的SiC(d 50 ≈3微米)上的硼化锆的磨损损坏颗粒(的ZrB 2)在不同长度比例进行评估。单片ZrB 2和20 vol%SiC增强ZrB 2通过火花等离子体烧结将两种不同粒径的SiC固结在一起。在干燥和未润滑的条件下,对烧结样品进行的磨损测试包括多动磨损(微磨损),微划痕(中磨损)和圆盘滚珠(宏观磨损)。通过扫描电子显微镜和光学轮廓仪表征的损伤评估和磨损机理表明,在微刮擦过程中,载荷≥5N时,所有样品的赫兹拉伸裂纹均发生。在宏观磨损过程中,SiC增强使磨损量,磨损率和摩擦系数(cof)降低。细SiC增强ZrB 2(ZS F)复合材料由于其最高的断裂韧性(4.6 MPa m 1/2)而在≥5N的负荷下显示出的裂纹最少)与SiC粗增强复合材料(ZS C,2.1 MPa m 1/2)和整体ZrB 2(3.9 MPa m 1/2)相比。相比的ZrB的复合材料增加的硬度2,和ZS ˚F显示增强的弹性模量和断裂韧性。总而言之,ZS F在改善机械性能和耐磨性方面的优势使其成为航空航天应用的潜在高端材料,其中具有高表面冲击力的颗粒可能会导致材料变形和去除。
更新日期:2020-08-04
down
wechat
bug