当前位置: X-MOL 学术J. Therm. Anal. Calorim. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Preparation, crystallization and degradation properties of poly(butylene succinate- co -neopentyl glycol succinate) copolymer/graphite oxide composites
Journal of Thermal Analysis and Calorimetry ( IF 4.4 ) Pub Date : 2020-08-05 , DOI: 10.1007/s10973-020-10110-5
Xiao-Ming Zhou , Xiao-Ya Wang , Tianci Wu

In this study, graphene oxide (GO) was prepared by the modified Hummers’ method and poly(butylene succinate-co-neopentylglycol succinate)/graphene oxide (GO–PBNPGS) nanocomposites were synthesized via in situ polymerization with a series of GO contents (from 0.01 to 0.10 mass%). The GO was characterized by Fourier transform infrared spectrum, atomic force microscopy and wide-angle X-ray diffractometry. The non-isothermal crystallization kinetics and crystalline morphology of the neat PBNPGS and its nanocomposites were analyzed by differential scanning calorimetry and polarized optical microscopy (POM), respectively. The results showed that GO was prepared successfully and dispersed in PBNPGS uniformly during the experimental process. The non-isothermal crystallization kinetics was characterized using Avrami equation modified by Jeziorny. The experimental results indicated that the non-isothermal crystallization behavior of the GO–PBNPGS was influenced by the GO content and cooling rate, the crystallization rate first increased and then decreased with an increase in GO content. Therefore, it was expected that the GO could accelerate the crystallization process. POM observations indicated that GO served as an effective nucleating agent for the crystallization of GO–PBNPGS when 0.10 mass% GO was added, and 0.05 mass% GO in PBNPGS had the largest spherulites and the lowest nucleation ability. In addition, the experimental data also showed that the biodegradation rate increased with the increasing of GO content, with a significant rate of degradation occurring in the composite sample with 0.10 mass% GO content.



中文翻译:

聚丁二酸丁二酯-共-新戊二醇丁二酸酯共聚物/氧化石墨复合材料的制备,结晶和降解性能

在这项研究中,氧化石墨烯(GO)的制备是通过将改进的Hummers'方法和聚(亚丁基琥珀酸盐通过原位聚合以一系列GO含量(0.01至0.10质量%)合成-新戊二醇琥珀酸酯/氧化石墨烯(GO-PBNPGS)纳米复合材料。GO的特征在于傅立叶变换红外光谱,原子力显微镜和广角X射线衍射仪。分别通过差示扫描量热法和偏光光学显微镜(POM)分析了纯PBNPGS及其纳米复合材料的非等温结晶动力学和晶体形态。结果表明,GO制备成功,并在实验过程中均匀分散在PBNPGS中。非等温结晶动力学用Jeziorny修正的Avrami方程表征。实验结果表明,GO-PBNPGS的非等温结晶行为受GO含量和冷却速率的影响,随着GO含量的增加,结晶速率先升高后降低。因此,可以预料到GO可以加速结晶过程。POM观察表明,当添加0.10质量%GO时,GO可以作为GO–PBNPGS结晶的有效成核剂,而PBNPGS中0.05质量%GO具有最大的球晶和最低的成核能力。另外,实验数据还表明,随着GO含量的增加,生物降解率也随之增加,在GO含量为0.10质量%的复合样品中,生物降解率显着降低。随着GO含量的增加,结晶速率先增加然后降低。因此,可以预料到GO可以加速结晶过程。POM观察表明,当添加0.10质量%GO时,GO可以作为GO–PBNPGS结晶的有效成核剂,而PBNPGS中0.05质量%GO具有最大的球晶和最低的成核能力。另外,实验数据还表明,随着GO含量的增加,生物降解率也随之增加,在GO含量为0.10质量%的复合样品中,生物降解率显着降低。随着GO含量的增加,结晶速率先增加然后降低。因此,可以预料到GO可以加速结晶过程。POM观察表明,当添加0.10质量%GO时,GO可以作为GO–PBNPGS结晶的有效成核剂,而PBNPGS中0.05质量%GO具有最大的球晶和最低的成核能力。另外,实验数据还表明,随着GO含量的增加,生物降解率也随之增加,在GO含量为0.10质量%的复合样品中,生物降解率显着降低。POM观察表明,当添加0.10质量%GO时,GO可以作为GO–PBNPGS结晶的有效成核剂,而PBNPGS中0.05质量%GO具有最大的球晶和最低的成核能力。另外,实验数据还表明,随着GO含量的增加,生物降解率也随之增加,在GO含量为0.10质量%的复合样品中,生物降解率显着降低。POM观察表明,当添加0.10质量%GO时,GO可以作为GO–PBNPGS结晶的有效成核剂,而PBNPGS中0.05质量%GO具有最大的球晶和最低的成核能力。另外,实验数据还表明,随着GO含量的增加,生物降解率也随之增加,在GO含量为0.10质量%的复合样品中,生物降解率显着降低。

更新日期:2020-08-05
down
wechat
bug